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Technical details of the ab initio calculations

Our first-principles calculations are performed at the Kohn-Sham1 DFT2 level. We employ

the SIESTA code3 with different implementations of the exchange-correlation functional: i)

the well-known spin-polarized local density approximation (LDA functional), as parameter-

ized by Perdew-Zunger4 and based on Ceperley-Alder simulations of the electron gas;5 ii)

the spin-polarized generalized gradient approximation (GGA), as implemented by Perdew,

Burke and Ernzerhof (PBE functional);6 iii) the fully nonlocal van der Waals functional

(vdW-DFT) proposed by Dion et al.,7 as implemented self-consistently by Román-Pérez

and Soler8 in SIESTA. Several parametrizations exist for this functional. In this work, we

employ that proposed by Klimes, Bowler, and Michaelides (KBM functional).9 The first

functional (LDA) is used only for testing and benchmarking the performance of several DFT

implementations; the main results of our paper have been obtained with the PBE and KBM

functionals.

The SIESTA code employs norm-conserving pseudopotentials to describe the core elec-

trons,10 in their fully separable form.11 Our pseudopotentials include non-linear partial core

corrections12 which are known to be important for zinc, and were generated self-consistently

for each of the XC-functionals employed. The 3d−manifold is explicitly included in the ac-

tive valence space. Tests were performed to ensure that eigenvalues and excitations energies

for several atomic configurations reproduced the all-electron results to better than 1 mRy.

SIESTA uses a flexible linear combination of numerical atomic orbitals as basis set, al-

lowing unlimited multiple-zeta and angular momenta, as well as polarization and off-site

orbitals. In order to limit the range of the basis pseudo-atomic orbitals, they are slightly

excited by a common energy shift and truncated at the resulting radial node. In our cal-

culations, the size of the basis set was double-zeta plus two polarization orbitals (DZP2),

resulting in a total of eight basis functions per atom.

The basis functions and the electron density are projected into a uniform real-space grid

in order to calculate the Hartree and exchange-correlation potentials and matrix elements.
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Table S1: Equilibrium bond distance d and cohesive energy Ecoh of the Zn2 dimer, and
lattice constants a, c and cohesive energy Ecoh of bulk Zn, as predicted by several exchange-
correlation functionals, are compared to either experimental results or other theoretical cal-
culations. Because experimental values about the spectroscopic constants of the dimer do
not agree with each other, we choose to show high-level coupled-cluster benchmark results
for comparison purposes, taken from Reference.13 Experimental results for bulk Zn are taken
from14

Zn2 d (Å) Ecoh (eV)
LDA 2.880 0.097
PBE 3.248 0.027
KBM 3.990 0.010
CCSD(T) 3.9-4.0 0.011-0.013

Zn(bulk) a,c (Å) Ecoh (eV)
LDA 2.601, 4.828 1.78
PBE 2.697, 5.026 1.12
KBM 2.713, 5.148 0.98
Exp. 2.6648, 4.9467 1.30

The grid fineness is controlled by the energy cutoff of the plane waves that can be represented

in it without aliasing, so this quantity is the analogue of the energy cutoff of typical plane-

wave codes. In our work we have found that a cutoff of 200 Ryd suffices to converge energies,

dipole moments and other electronic properties with respect to the grid resolution.

All equilibrium cluster geometries were obtained from unconstrained conjugate-gradients

structural relaxation using DFT forces. The structures were relaxed until the force on each

atom was smaller than 0.01 eV/Å.

The accuracy of our computational settings for both the dimer and bulk limits is shown in

Table S1. Because of the closed-shell electronic configuration of Zn, the dimer is bound only

by weak van der Waals’ forces, which poses serious difficulties for theoretical calculations.

Many of them resulted in a negative dissociation energy in the past, and experimental results

also show scattered data. Only the most accurate levels of theory have led to consistent and

reproducible results with little scattering, and these are shown in the Table as a benchmark

reference. Not surprisingly, only the KBM functional can describe the dimer with a good

accuracy, comparable indeed to the accuracy of more elaborate CCSD(T) methods (coupled
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cluster calculations with single and double excitations included, and a perturbative estima-

tion of triple excitations). The LDA results in a very substantial overbinding, which is only

partially alleviated in PBE calculations. In the bulk limit, on the contrary, both PBE and

KBM result in accurate reproduction of experimental values, with PBE performing slightly

better. Because of its higher accuracy for bulk properties and its lower computational ex-

pense, we have performed the main calculations of this paper with the PBE functional,

although performing an extensive comparison of PBE and KBM results for clusters with

up to N = 21 atoms and some other selected sizes. The results, shown in the main paper,

demonstrate the similar performance of PBE and KBM for most sizes and a nice reproduc-

tion of the relative abundances observed in the experimental mass spectra. Independent

benchmark bulk calculations performed by Janthon et al.15 with the VASP code confirm the

high accuracy of the PBE functional for the particular case of zinc. Also, a previous work16

already demonstrated that vdW-like bonding in small Zn clusters persists only up to N = 4.

For a few selected clusters, chosen from those exhibiting unusual structural or electronic

behaviors as discussed in the main text, we additionally performed a comparison with results

obtained using the VASP code17,18 with the PBE functional. VASP employs a plane-waves

basis set instead of numerical pseudoatomic orbitals, and the core interactions are treated

by means of the projector-augmented wave (PAW) approach instead of pseudopotentials.

In all cases the agreement with our SIESTA setup was essentially perfect, reinforcing the

confidence in the results obtained with SIESTA. In the end, the accuracy of the SIESTA

results for clusters is demonstrated by the nice reproduction of photoemission results (seen

in the main paper) and also of mass abundance spectra.

We have additionally double-checked our results against TURBOMOLE19 and G0920

codes, both of which have high accuracy standards in the quantum chemistry community.

We have chosen Zn−
10 as a test system to perform the benchmark comparisons. Specifically,

we have considered five different structural isomers to check their energetic ordering (see

fig. 1). In first place, we have performed single-point all-electron PBE-TURBOMOLE
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calculations at the SIESTA optimal geometries of Zn−
10 anion in order to check the different

basis sets provided in TURBOMOLE, from “def-SV(P)” to “def2-QZVPPD”, and also with

two different grids (called “m3” and “m5” in TURBOMOLE) to check the quality of the

performed Fourier transforms. The results show that the “m3” grid with the def2-TZVPD

basis set already provide well converged results for the binding energy, HOMO-LUMO gap,

and vertical detachment energy. With this assertion we specifically mean that going from

def2-TZVPD/m3 to def2-QZVPPD/m5 calculations the HOMO-LUMO gap and vertical

detachment energies change by only 0.01 eV, and the binding energy per atom changes by

less than 0.01 eV/atom. So the TURBOMOLE geometry optimizations have been performed

at the def2-TZVPD/m3 level. We have done similar single-point PBE energy calculations

with the G09 code employing Pople basis sets, to conclude that 6-31+g(d) basis offers well

converged results: augmenting the basis to 6-311+g(2d) produces again changes of less

than 0.01 eV/atom in binding energies, and of less than 0.01 eV in HOMO-LUMO gap

and VDE values. The G09 optimizations have then been performed with the 6-31+g(d)

basis. The choice of Pople basis sets allows to test a different basis set, not employed in the

TURBOMOLE calculations.

Taking the optimal SIESTA structures as an input for TURBOMOLE, we have then

optimized the geometries of the five isomers of Zn−
10 with TURBOMOLE, also at the all-

electron level. Each separate optimization took only about 10 steps and finished in about one

hour, which is already an indication that SIESTA and TURBOMOLE optimal structures are

very close. A detailed analysis (performed on the GM structure for instance, but the results

are similar for the five isomers) shows that the only significant difference is a contraction by

0.036 Å in the average bond distance, i.e. TURBOMOLE optimal geometries are slightly

more compact.

We have also performed single-point SIESTA calculations on the TURBOMOLE optimal

geometries. It is interesting to notice that both codes produce exactly the same vertical

detachment energy when calculated at the same geometry. At the SIESTA optimal geometry
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both codes produce a value of 1.87 eV for the GM structure, while at the TURBOMOLE

optimal geometry both codes produce 1.81 eV. So both codes seem to predict the same

electronic properties if the external nuclear potential is the same, so the only important

difference is indeed the contraction in average bond distance, which is a 1.3% difference in

percentage value.

Concerning G09 optimizations, we found that optimal G09 and TURBOMOLE geome-

tries are very similar, although G09 is slightly closer to SIESTA results (G09 structures are

1.1% more compact on average than SIESTA geometries, instead of the 1.3% difference ob-

tained with TURBOMOLE). Being the difference in bond distances smaller, the G09 result

for the vertical detachment energy (1.84 eV) also agrees better with the SIESTA result of

1.87 eV. Finally, we performed additional single-point G09 calculations with the 6-311+g(2d)

basis, on the 6-31+g(d) optimized structures, which in quantum chemical standard notation

is a pbepbe/6-311+g(2d)//pbepbe/6-31+g(d) calculation. This last calculation is done to

check the energetic ordering of isomers with a more complete basis. As shown in Figure

1, all the different codes predict the same energetic ordering and similar energy differences,

irrespective of basis set and of the pseudopotential approximation employed in SIESTA.

Some fluctuations between codes are always to be expected, but it seems that the vertical

detachment energy typical fluctuation is of the order of only 0.05 eV or less, and the bond

distance fluctuation is of about 1%. Energy differences are also consistent between codes,

and although SIESTA results are systematically lower (probably related to the longer average

bond distance), the differences remain of the order of 0.01 eV/atom or less.

These detailed comparisons demonstrate that SIESTA-PBE is very close to both TURBOMOLE-

PBE or G09-PBE. SIESTA calculations produce an VDE value of 1.87 eV, which is in slightly

better agreement with the experimental value of 1.91 eV, so SIESTA is slightly more accu-

rate than TURBOMOLE or G09 in this sense. Nevertheless, we emphasize that the only

meaningful conclusion in our opinion is that all codes are pretty close. Small fluctuations

in the results of several codes are expected and observed in most comparisons, and it is
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much more difficult to discuss them. We can state that it needed vary careful optimization

of the SIESTA basis and pseudo to get it to work that well, and that we do not have the

possibility to tweak TURBOMOLE or G09 basis sets in a similar way. We can not be sure

if the better agreement between SIESTA and experiment is just a fortunate issue with the

employed pseudopotential, or a result of our careful basis optimization, but what we can

assert is that SIESTA-PBE compares slightly better with experiment, so it is certainly well

suited to deal with our particular problem.
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Figure S1: Structures and point group symmetries of five selected isomers of Zn−
10. The

numbers below each isomer give the energy difference with respect to the GM structure: 1st
row (SIESTA results); 2nd row (TURBOMOLE results with def2-TZVPD basis); 3rd row
(G09 results with 6-31+g(d) basis); 4th row (pbepbe/6-311+g(2d)//pbepbe/6-31+g(d) G09
results).

Additional technical details about the optimization runs

For each cluster size and for a given Gupta potential, we always performed three independent

BH runs, with different values of the temperature variable used in the acceptance Metropolis

algorithm, and a fourth additional BH run in which the temperature is decreased from a

high to a low value (a sort of “annealing BH” run). The four runs add up to a total of two
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million BH steps.

Each of those four runs is started from a randomly generated structure, but this does not

mean that there are only four starting points. The GMIN code includes a “restart” option

that we have employed. When the energy does not improve after a user-specified number

of steps (we used values between 20000 and 50000 steps) the run is re-seeded with a new

random structure. So we can not specifiy a precise number of starting points, as it is decided

by the code and is different for each size, but about 10 restarts are usual in each run. On

average, that would result in 40 starting points.

The BH runs are performed for each different size, but the attribute ”charge” is not

present yet at the level of the employed Gupta potential. So the same structural databank

is employed for cations, anions and neutrals of a given size. The three DFT optimization

are “independent” in the sense that they are all started directly from the Gupta minima

(instead of optimizing first the neutrals, and then using those DFT-optimized structures as

an input for cations and anions).

The “size-comparison” for N+1 and N−1 clusters was performed as a final optimization

stage directly at the DFT level. As no BH run is completely exhaustive, and also because

100 selected structures for DFT re-optimization may be not enough, this final step may help

sometimes. We typically remove low-coordinated atoms, and add atoms at high-coordination

sites, i.e. we perform this “size-comparison” check manually, which sometimes amounts to a

lot of work. Moreover, we don’t do it only with the current GM structure of the N−cluster,

but also with the first few excited isomers. In the end, there may be up to 30 new structures

generated this way. We also performed “charge-comparison” at the ab initio level any time

that we observed that, starting from the same Gupta structure, anion and neutral (for

instance) relax to different structures in the DFT optimization.

When these last steps find a new putative GM, it is always one that differs little from an

already existing one (typically moving one adatom to one place to another, for example). In

those cases, we have always checked that the new structure is a local minimum at the Gupta
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level, i.e. the size-comparison step essentially complements the isomer-selection step, rather

than providing new minima that are not on the Gupta data bank. This point is important

to emphasize that the whole search is based on the structures located at the Gupta level,

with little modifications. An example of GM structures located in this last size-comparison

step is Zn55 and Zn−
55, which both have adatoms on top of Zn54.

To complete this part, we mention that the seeded BH runs (with a fixed core) mentioned

in the main text were essential to locate the D2d structures at sizes N =54 and 56. Both

contain a 10-atom tetrahedron as core, and for some reason they were not located even after

2 million unconstrained BH steps. It was precisely the availability of experimental data and

the bad initial agreement with photoemission spectra for those sizes that forced us to run

some seeded-core constrained optimizations. We have found in our previous research more

examples that show that tetrahedral spiky shapes are quite difficult to locate.

Additional details about the optimization of the poten-

tial

We provide here more details about the performance ranking of the potentials which might be

useful to other researchers trying the approach. An interesting question is whether one should

expect to find a single “best” Gupta potential for a given metal or rather just an optimal

local region in parameter space. Our experience with Zn clusters leads us to conclude that,

while there is a “best average potential”, it is always advisable to employ also potentials

in a local environment around the optimal parameters to enhance diversity. This is in

fact expected because the Gupta potential is very simple and does not contain explicit

representations of many effects which are very important in the physics of metal clusters, as

for example electronic shell effects. All those complexities in the interactions are embedded

into just two parameters in the reduced Gupta potential, so some fluctuations in the values

of optimal parameters as a function of cluster size should be expected, and in our opinion
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may be unavoidable unless a much more complex potential is employed. A related problem

is whether one will be able to discern any smooth evolution of optimal parameters as a

function of cluster size, or if such an evolution will be “blurred” by the fluctuations of

optimal parameters as a function of size.

Concerning these interesting questions, we stress that we have used the averaged ab initio

binding energy per atom of the six chosen cluster sizes to rank the potentials, so a first thing

to point out is that we have not yet analyzed if different potentials are better in different

size ranges. We preferred to have a better statistics by averaging the results of the six sizes.

Nevertheless, the results confirm a posteriori that the size range considered in this paper

is not wide enough yet to discern any sort of evolution in the optimal parameters. Our

optimal potential should be considered “optimal on average”, and there may be significant

fluctuations (for example, due to electronic shell effects not present in a Gupta potential

description) from the mean, which make impossible to discern a clear evolution in the optimal

parameters as a function of size, and which suggest to use in practice not a single potential

but several in a local average about the optimal one. This is precisely what we have done.

In the initial coarse grain procedure for optimizing the potential, in which the whole

parameter space is sampled, there is a well defined region that clearly wins in the ranking,

as mentioned in the main paper: the corner with high values of λ and small values of χ. The

local minima produced by different potentials are very different in general, so the energy

differences after DFT-reoptimization are significant. This initial procedure focuses the user

clearly and neatly (without any confusion) towards that region of parameter space (as a side

comment, the bulk parametrization is also within that region). Of course, when using a finer

grain within that local region in a second step, different potentials are no longer so different

as before and get closer in the ranking. Here the user should experiment himself, we have

considered only the Zn system with this technique and we will have to experiment ourselves

for other systems. There is not a clear recipe on how fine should the grid be made, but in

order to be useful it should not be so fine that neighboring potentials in the grid are nearly
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equivalent. The “best on average” potential corresponds to a maximum averaged binding

energy per atom calculated after SIESTA optimization. If several potentials in a local region

of parameter space around the ”best” rank similarly, our advice would be to use several of

those potentials as generators of reasonable structures.

As an useful addition to the interested reader, we include here the following information:

we have observed that the λ parameter is much better fixed than χ by our procedure.

Although this may be different for other systems, it seems to imply that the number of core

atoms (the property controlled by λ) is a much stronger property, i.e. one affecting the

energy to a more significant degree. The value λ = 0.48 is thus strongly fixed, as already

values of 0.47 and 0.49 produce for many sizes structures with the wrong number of core

atoms, and this is indeed one important reason why the bulk-fitted potential (with λ = 46)

is so bad for clusters. χ, on the contrary, produces a smaller effect on the objective function

(the energy), and although χ = 2 is its optimal value according to our definition, values of

up to χ = 50 produce also good results. These results demonstrate something important:

Zn clusters have a well defined value of the optimal number of core atoms, and changing

that costs much energy; however, the amount of energy penalty induced by bond strain

is not so well fixed. In other words, the optimal χ parameter fluctuates with cluster size

about the optimal value. We have observed similar results on our previous research, for

example on aluminum clusters. Many of the medium-sized Al clusters are layered, and so

feature GM structures with little strain, which are only predicted at high χ with the Gupta

potential; but close to electronic shell closings, where a spherical shape is favoured according

to jellium models, a transition towards an spherical and strained GM was observed, implying

that the spherical shape favored by an electron shell closing compensates the cost of strain.

Now, those structures are only predicted at low χ with the Gupta potential. In words, we

believe that electronic shell effects and other effects not included in a Gupta description are

the reason that the χ parameter can not have a precisely defined value, and that several

potentials about the best average potential should be used to enhance structural diversity.
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In our work, we have employed the following: (λ = 0.48, χ = 2), (λ = 0.48, χ = 10),

(λ = 0.48, χ = 50), (λ = 0.49, χ = 2). This information does not modify the main message

of the paper, but provides the reader with the full details of our procedure.

We expect that it is now fully clear what we mean when stating that (λ = 0.48, χ = 2)

is the best potential “on average”. It produced the best objective function, which is itself

an average of 6 binding energies for different cluster sizes. It is also the potential that

proposed structures that converged to the right GM structures in the SIESTA optimizations

for most sizes. The choice of (λ = 0.48, χ = 50) may seem strange at first sight as the core

repulsion is not so soft anymore. In fact, this potential typically produced structures which

were not the GM after SIESTA optimizations, but for example produced the right GM for

Zn20. The soft-core potential produces, as explained in the paper, rounded structures while

the C3 GM of Zn20 has a rough tetrahedral shape with four “spiky” atoms, and those can

only be produced by harder-core potentials. The situation here is similar to the aluminum

one mentioned above: the Gupta potential does not incorporate all the essential features of

metallic interaction, only some of them, so there seems to be no escape, some flexibility in

the χ parameter is advisable. This is an important conclusion that, for brevity reasons, was

not exposed enough in the main paper, and is highlighted here.
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