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Figure S1. Barrette-Joynere-Halenda (BJH) pore-size distribution curve of the α-

NaYbF4@CaF2 core–satellite nanoparticles.
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Figure S2. α-NaYbF4 core nanoparticles synthesized by (a) one-shot quick injection (4 mL) 

and step-by-step injection at (b) 1.33 mL×3 times, (c) 1 mL×4 times, and (d) 0.8 mL×5 times.
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Figure S3. HRTEM images of the α-NaYbF4@CaF2 core–satellite nanoparticles (a) at the end 

of core reaction, (b) right after the first shell injection, and (c) at the end of the second shell 

reaction, respectively.
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Figure S4. Comparison of upconversion performance of the α-NaYbF4:Er (2%)@CaF2 core–

satellite nanoparticles and β-NaYbF4:Er (2%)@NaYF4 core–shell nanoparticles. The emission 

intensity of the α-NaYbF4:Er (2%)@CaF2 core–satellite nanoparticles is about one fifth the 

intensity of typical β-NaYbF4:Er (2%)@NaYF4 core–shell nanoparticles under the same 

testing condition.
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Figure S5. (a) Synthesis scheme and TEM images, (b) XRD pattern, and (c) 

photoluminescence spectra of the α-NaYbF4:Tm (1%)@CaF2 core–satellite UCNPs prepared 

by a step-by-step injection of excessive CaF2 shell precursors (4 mL). The TEM images show 

a continuous enlargement in particle size as increasing precursor content. However, the 

comparison of PL spectra show that the emission intensity is unlikely to be further enhanced 

by growing a thick shell (4 injections of shell precursor).
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Figure S6. TEM images of (a) α-NaYbF4:Tm (1%)@CaF2 core–satellite nanoparticles and (b) 

α-NaYbF4:Tm (1%)@CaF2 core–shell nanoparticles after removal of oleate ligands by acidic 

treatment. (c) Upconversion spectra of the α-NaYbF4:Tm (1%)@CaF2 core–satellite 

nanoparticles and core–shell nanoparticles in aqueous solution. The results show that the 

satellite CaF2 coatings provide equivalent protection of the upconversion core as dense shells 

in aqueous media.
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Figure S7. TEM images of (a) α-NaYF4@CaF2 core–satellite nanoparticles and (b) α-

NaYbF4@SrF2 core–satellite nanoparticles.
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Figure S8. Absorption spectrum of MnO2 showing the spectral overlapping with the emission 

spectrum of the α-NaYbF4:Tm (1%)@CaF2 UCNPs excited at 980 nm.
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Figure S9. Basic reaction principle of GSH detection.
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Figure S10. TEM images of the α-NaYbF4:1%Tm@CaF2@MnO2 nanohybrids synthesized 

by mixing the α-NaYbF4:Tm (1%)@CaF2 core–satellite UCNPs with CTAB, MES, and 

different amount of KMnO4 (50–500 μL, 10 mM) for 30 min.
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Figure S11. (a) TEM image of MnO2 nanosheets synthesized by mixing of MES and KMnO4 

with ultrasound treatment and centrifugation for 30 min. (b) TEM image of UCNP + MnO2 

hybrids synthesized by mixing the α-NaYbF4:Tm (1%)@CaF2 core–satellite UCNPs, MES, 

and KMnO4 with ultrasound treatment and centrifugation.
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Figure S12. TEM images of UCNPs@MnO2 hybrids using (a) α-NaYbF4:Tm (1%)@CaF2 

core–dense shell UCNPs and (b) β-NaYbF4:Tm (1%)@NaYF4 UCNPs, respectively. Note 

that the layered MnO2 in b is highlighted with red arrow.
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Figure S13. (a) Nitrogen adsorption-desorption isotherms of α-NaYbF4:Tm (1%)@CaF2 

core–dense shell UCNPs. (b) Photoluminescence response of MnO2-modified α-NaYbF4:Tm 

(1%)@CaF2 core–dense shell UCNPs as a function of GSH content. (c) Calibration curve of 

GSH detection using the MnO2-modified α-NaYbF4:Tm (1%)@CaF2 core–dense shell 

nanohybrids. LOD = 0.88 μM.


