Electronic Supplementary Information

NaYbF₄@CaF₂ Core–Satellite Upconversion Nanoparticles: One-Pot Synthesis and Sensitive Detection of Glutathione

Bing Chen^{*a,b*} and Feng Wang^{*,*a,b*}

^aDepartment of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China ^bCity University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

*Corresponding author. E-mail: fwang24@cityu.edu.hk

Figure S1. Barrette-Joynere-Halenda (BJH) pore-size distribution curve of the α -NaYbF₄@CaF₂ core-satellite nanoparticles.

Figure S2. α -NaYbF₄ core nanoparticles synthesized by (a) one-shot quick injection (4 mL) and step-by-step injection at (b) 1.33 mL×3 times, (c) 1 mL×4 times, and (d) 0.8 mL×5 times.

Figure S3. HRTEM images of the α -NaYbF₄@CaF₂ core–satellite nanoparticles (a) at the end of core reaction, (b) right after the first shell injection, and (c) at the end of the second shell reaction, respectively.

Figure S4. Comparison of upconversion performance of the α -NaYbF₄:Er (2%)@CaF₂ coresatellite nanoparticles and β -NaYbF₄:Er (2%)@NaYF₄ core-shell nanoparticles. The emission intensity of the α -NaYbF₄:Er (2%)@CaF₂ core-satellite nanoparticles is about one fifth the intensity of typical β -NaYbF₄:Er (2%)@NaYF₄ core-shell nanoparticles under the same testing condition.

Figure S5. (a) Synthesis scheme and TEM images, (b) XRD pattern, and (c) photoluminescence spectra of the α -NaYbF₄:Tm (1%)@CaF₂ core-satellite UCNPs prepared by a step-by-step injection of excessive CaF₂ shell precursors (4 mL). The TEM images show a continuous enlargement in particle size as increasing precursor content. However, the comparison of PL spectra show that the emission intensity is unlikely to be further enhanced by growing a thick shell (4 injections of shell precursor).

Figure S6. TEM images of (a) α -NaYbF₄:Tm (1%)@CaF₂ core–satellite nanoparticles and (b) α -NaYbF₄:Tm (1%)@CaF₂ core–shell nanoparticles after removal of oleate ligands by acidic treatment. (c) Upconversion spectra of the α -NaYbF₄:Tm (1%)@CaF₂ core–satellite nanoparticles and core–shell nanoparticles in aqueous solution. The results show that the satellite CaF₂ coatings provide equivalent protection of the upconversion core as dense shells in aqueous media.

Figure S7. TEM images of (a) α -NaYF₄@CaF₂ core-satellite nanoparticles and (b) α -NaYbF₄@SrF₂ core-satellite nanoparticles.

Figure S8. Absorption spectrum of MnO_2 showing the spectral overlapping with the emission spectrum of the α -NaYbF₄:Tm (1%)@CaF₂ UCNPs excited at 980 nm.

Figure S9. Basic reaction principle of GSH detection.

Figure S10. TEM images of the α -NaYbF₄:1%Tm@CaF₂@MnO₂ nanohybrids synthesized by mixing the α -NaYbF₄:Tm (1%)@CaF₂ core–satellite UCNPs with CTAB, MES, and different amount of KMnO₄ (50–500 µL, 10 mM) for 30 min.

Figure S11. (a) TEM image of MnO_2 nanosheets synthesized by mixing of MES and KMnO₄ with ultrasound treatment and centrifugation for 30 min. (b) TEM image of UCNP + MnO_2 hybrids synthesized by mixing the α -NaYbF₄:Tm (1%)@CaF₂ core–satellite UCNPs, MES, and KMnO₄ with ultrasound treatment and centrifugation.

Figure S12. TEM images of UCNPs@MnO₂ hybrids using (a) α -NaYbF₄:Tm (1%)@CaF₂ core-dense shell UCNPs and (b) β -NaYbF₄:Tm (1%)@NaYF₄ UCNPs, respectively. Note that the layered MnO₂ in b is highlighted with red arrow.

Figure S13. (a) Nitrogen adsorption-desorption isotherms of α -NaYbF₄:Tm (1%)@CaF₂ core–dense shell UCNPs. (b) Photoluminescence response of MnO₂-modified α -NaYbF₄:Tm (1%)@CaF₂ core–dense shell UCNPs as a function of GSH content. (c) Calibration curve of GSH detection using the MnO₂-modified α -NaYbF₄:Tm (1%)@CaF₂ core–dense shell nanohybrids. LOD = 0.88 μ M.