Supporting Information

A small heterobifunctional ligand provides stable and water dispersible core-shell CdSe/ZnS quantum dots (QDs)

Gianluca Salerno,^{a,b} Simona Scarano,^a Marianna Mamusa,^{a,c} Marco Consumi,^d Stefano Giuntini,^a Antonella Macagnano,^e Stefano Nativi,^f Marco Fragai,^a Maria Minunni,^a Debora Berti,^{a,c} Agnese Magnani,^d Cristina Nativi,^a and Barbara Richichi^{a,b} *

^a Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019 Sesto F.no (FI), Italy. ^b INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze (Italy).

^c CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze (Italy).

^d Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy.

^e Institute of Atmospheric Pollution Research of the National Research Council of Italy (CNR-IIA), Via Salaria km 29, 300, 00016 Monterotondo(RM), Italy.

^f Institute of Atmospheric Pollution Research of the National Research Council of Italy (CNR-IIA), Via Madonna del Piano, 10, 50019 Sesto F.no (FI) Italy.

Table of contents

Figure S1	S3
Figure S2	S3
Figure S3	S3
Figure S4	S4
Figure S5	S4
Figure S6	S4
Figure S7	S5
Figure S8	S5
Figure S9	S5
Figure S10	S6
Figure S11	S7
Figure S12	S8
Figure S13	S 8

Figure S14	S8
Figure S15	S9
Figure S16	S9
Figure S17	S10
Figure S18	S11
Figure S19	S11
Figure S20	S12
Figure S21	S12
Figure S22	S12
Figure S23	S13
Figure S24	S14
Synthesis of compound 13	S14
S-video	S15

Figure S1. Absorbance (a) and fluorescence (b) spectra of CdSe QDs 3.

Figure S2. Absorbance (a) and fluorescence (b) spectra of core-shell CdSe/ZnS QDs 2.

Figure S3. TEM images of CdSe/ZnS QDs 2.

Figure S4. Pictures related to the phase transfer steps. (a) t = 0: (i) under white light, (ii) under UV light; (b) t = 18 h: (iii) under white light, (iv) under UV light.

Figure S5. Absorbance (a) and fluorescence (b) spectra of DHLA-EDADA grafted CdSe/ZnS QDs 1.

Figure S6. TEM images of DHLA-EDADA grafted CdSe/ZnS QDs 1.

Figure S7. (a) Fluorescence spectra of DHLA-EDADA grafted CdSe/ZnS QDs 1 suspension in H₂O at different concentrations; (b) Fluorescence spectra of DHLA-EDADA grafted CdSe/ZnS QDs 1 (red line, H₂O) and TOPO grafted 2 (blue line, CHCl₃).

Figure S8. Dynamic Light Scattering of DHLA-EDADA grafted CdSe/ZnS QDs 1 in H₂O: (a) autocorrelation function; (b) size distribution.

Figure S9. Fluorescence spectra of DHLA-EDADA grafted CdSe/ZnS QDs 1 in H₂O over five months.

Figure S10. Comparative ¹H-NMR (500MHz) spectra of the up-field region of the a) TOPO coated CdSe/ZnS QDs **2** (5.0 mg/mL in CDCl₃, d1 = 1s); b) DHLA-EDADA ligand **4** (in D₂O) and c) DHLA-EDADA coated CdSe/ZnS QDs **1** (5.0 mg/mL in D₂O, d1 = 1s).

Figure S11. (a) ³¹P NMR (400MHz) spectra of a) TOPO grafted CdSe/ZnS QDs **2** (5.0 mg/mL in CDCl₃); (b) DHLA-EDADA grafted CdSe/ZnS QDs **1** (5.0 mg/mL in D₂O).

Figure S12. Normalized field autocorrelation functions for an aqueous dispersion of DHLA-EDADA-QDs **1** analyzed over time. (a) Samples stirred before each measurement; (b) samples not stirred before measurements.

Figure S13. Normalized field autocorrelation functions for a aqueous dispersions of DHLA-EDADA-QDs 1 at different pH values, analyzed over time. (a) pH 4.00; (b) pH 6.00; (c) pH 10.00.

Figure S14. Pictures related to water solutions of DHLA-EDADA grafted CdSe/ZnS QDs 1 at different pH values (from pH 3.00 up to pH 11.00): (a) t = 0: (i) under white light, (ii) under UV light; (b) t = 72h: (i) under white light, (ii) under UV light.

Figure S15. (a) Relative photoluminescence of DHLA-EDADA coated CdSe/ZnS QDs 1 in PBS buffer (100 mM, pH = 6.00 and 7.00); (b) Trend of hydrodynamic diameter for DHLA-EDADA-QDs 1 dispersed in PBS buffer (100 mM, pH = 6.00 and 7.00).

Figure S16. (a) Autocorrelation functions of DHLA-EDADA-QDs 1 in TRIS-HCl buffer suspension collected over time; (b) Trend of hydrodynamic diameters of DHLA-EDADA QDs 1 in TRIS-HCl buffer suspension collected over time; (c) Photoluminescence of DHLA-EDADA grafted CdSe/ZnS QDs 1 in TRIS-HCl buffer collected over time.

Figure S17. (a) Autocorrelation functions of DHLA-EDADA-QDs 1 in DMEM buffer suspension collected over time; (b) Trend of hydrodynamic diameters of DHLA-EDADA QDs 1 in DMEM cell culture medium collected over time; (c) Photoluminescence of DHLA-EDADA grafted CdSe/ZnS QDs 1 in DMEM buffer over time.

Figure S18. Fluorescence spectra of DHLA-EDADA grafted CdSe/ZnS QDs 1 titrated with: $[Pb^{2+}] 4.5 \times 10^{-4} \text{ M} - 1.0 \times 10^{-7} \text{ M}$ (a); $[Hg^{2+}] 4.5 \times 10^{-3} \text{ M} - 1.0 \times 10^{-7} \text{ M}$ (b); $[Cd^{2+}] 4.5 \times 10^{-3} \text{ M} - 1.0 \times 10^{-7} \text{ M}$ (c); $[Co^{2+}] 4.5 \times 10^{-4} \text{ M} - 1.0 \times 10^{-9} \text{ M}$ (d); $[Cu^{2+}] 4.5 \times 10^{-4} \text{ M} - 1.0 \times 10^{-7} \text{ M}$ (e); $[Zn^{2+}] 4.5 \times 10^{-3} \text{ M} - 1.0 \times 10^{-5} \text{ M}$ (f).

Figure S19. (a) ¹H-NMR spectrum (500 MHz, D_2O) of compound 13; (b) ¹H-NMR spectrum (500 MHz, D_2O) of conjugated QDs 11.

Figure S20. (a) Electrophoresis analysis of the conjugation reaction with OVA protein; (b) Fluorescence spectrum of QDs 1-OVA conjugate.

Figure S21. Picture of PVA film (left) and PVA-QDs 1 composite (right).

Figure S22. SAXS pattern obtained for the PVA-QDs **1** composite. Blue markers represent the experimental data while the black solid line is the curve fitting (see main text for details).

Figure S23. (a) ¹H-NMR (500 MHz, CD₃OD) of compound 9; (b) ¹³C-NMR (125 MHz, CD₃OD) of compound 9.

Figura S24. (a) ¹H-NMR (500 MHz, D_2O) spectrum of compound 4. (b) ¹³C-NMR (125 MHz, D_2O) spectrum of compound 4.

To a solution of compound 4 (100 mg, 0.24 mmol) in DMF (0.5 mL), 1,1'-Carbonyldiimidazole (99 mg, 0.61mmol) and Triethylamine (67 mg, 0.65 mmol) were added. The reaction mixture was stirred at r.t. for 30', then, a solution of **10** (160 mg, 0.61 mmL) in DMF (0.5 mL) was added. After 18 h at r.t., the reaction mixture was diluted with AcOEt (250 mL) and washed with

H₂O (3 x 15 mL) and BRINE (2 x 15 mL). Organic phase was dried over Na₂SO₄ filtered and reduced in vacuum. The crude was purified by flash column chromatography on silica gel (DCM:MeOH, 20:1) to give **13** as a yellow oil (82 mg, 56%). ¹H-NMR (500 MHz, D₂O): δ 3.89-3.75 (m, 9H), 3.43-3.28 (m, 9H), 2.51-2.45 (m, 1H), 2.25 (t, J = 5 Hz, 2H), 1.94-1.88 (m, 1H), 1.78-1.62 (m, 4H), 1.53-1.44 (m, 2H). ¹³C-NMR (125 MHz, D₂O) 177.5, 170.7, 70.4, 70.2, 61.3, 58.8, 55.6, 54.0, 41.3, 4.6, 38.7, 36.2, 30.9, 21.6. ESI-MS m/z: calcd for [M + H⁺]⁺ 612.29. Found 613.37.

S-Video: Water dispersion of QDs 1 in NMR tube (3.0 mg/mL in D_2O) and lyophilization of QDs 1 is reported. Then the last section of the video shows QDs 1 as lyophilized powder and dispersion of QDs 1 (after 3 cycles of lyophilization) at the concentration of 13.0 mg/mL.