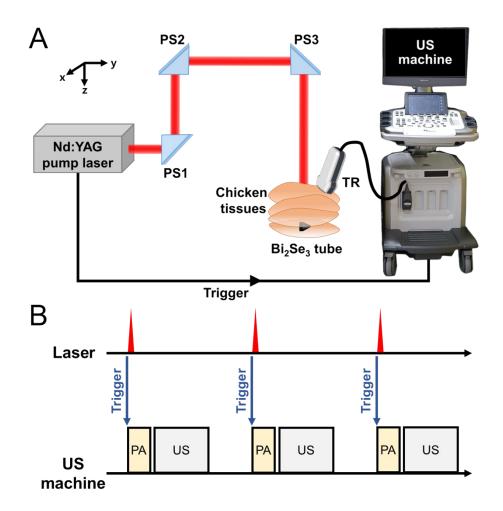
Supplementary Information


Bi₂Se₃ Nanoplates for Contrast-enhanced Photoacoustic Imaging at 1064 nm

Sara Park,^{§a} Gyeongbae Park,^{§b} Jeesu Kim,^a Wonseok Choi,^a Unyong Jeong,^{*b} and Chulhong Kim^{*b}

^aDepartments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea. ^bDepartment of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea. ^{*}Corresponding author: <u>chulhong@postech.edu</u> and <u>ujeong@postech.ac.kr</u> [§]These authors contributed equally to this work.

E-mail address:

Sara Park: <u>sarapark@postech.ac.kr</u> Gyeongbae Park: <u>rochellesalt@postech.ac.kr</u> Jeesu Kim: <u>hybridjs@postech.ac.kr</u> Wonseok Choi: <u>zoids1215@postech.ac.kr</u> Unyong Jeong: <u>ujeong@postech.ac.kr</u> Chulhong Kim: <u>chulhong@postech.edu</u>

Fig. S1 Schematic of deep tissue PA imaging. (A) Experimental setup. (B) Synchronized timing sequence. PA, photoacoustic; PS, prism; US, ultrasound; TR, ultrasound transducer.

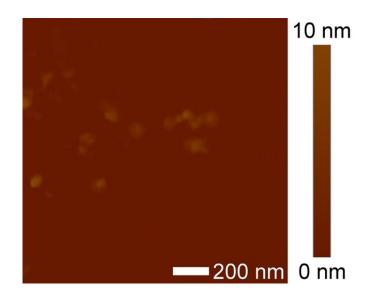
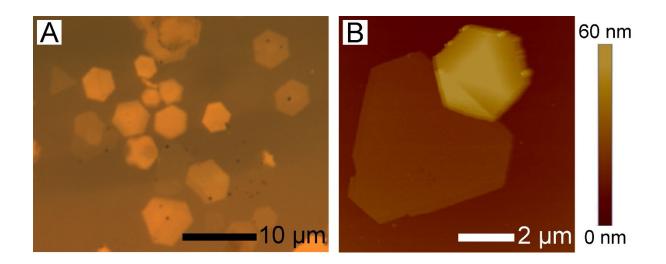
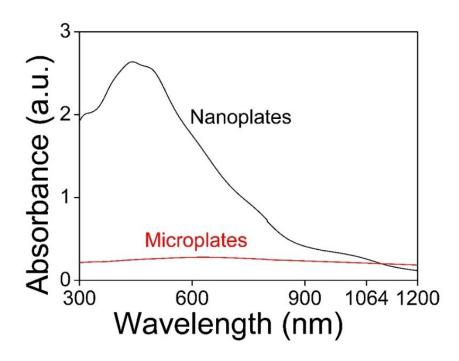
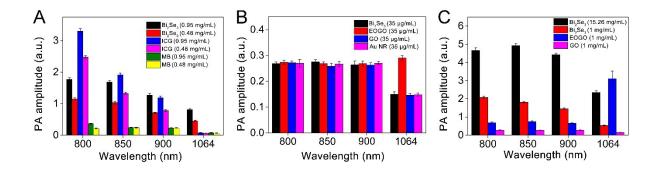
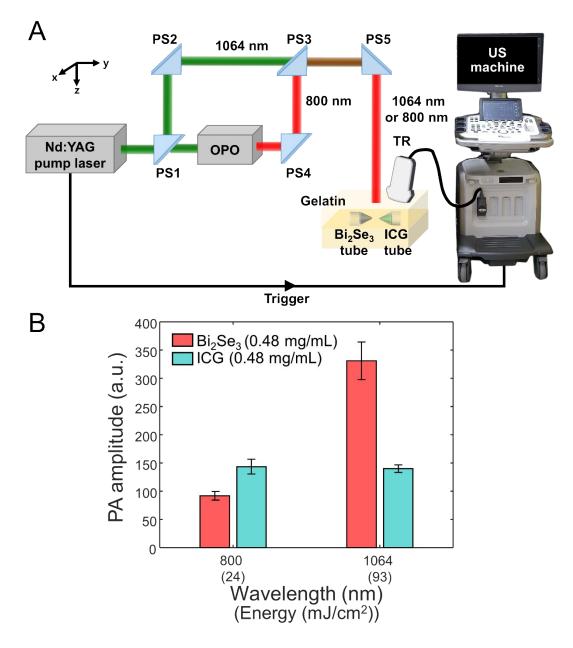
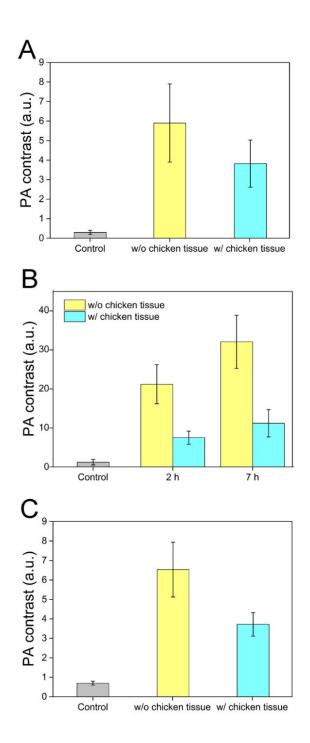



Fig. S2 AFM image of Bi_2Se_3 nanoplates spin-coated on the Si substrate. AFM, atomic force microscope.

Fig. S3 Characterization of Bi_2Se_3 microplates on the Si substrate. (A) OM image and (B) AFM height image of Bi_2Se_3 microplates. OM, optical microscope; AFM, atomic force microscope.


Fig. S4 Absorption spectra of Bi₂Se₃ nanoplates (black) and microplates (red).

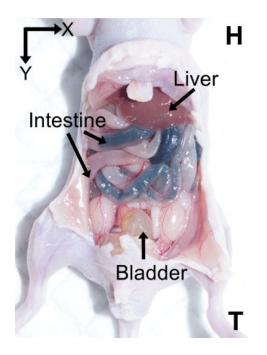

Fig. S5 *In vitro* PA characteristics of various dyes in NIR region. (A) PA spectral response of Bi₂Se₃ nanoplates, ICG, and MB (concentration: 0.95 mg/mL and 0.48 mg/mL). (B) PA spectral response of Bi₂Se₃ nanoplates, EOGO, and GO (concentration: 35 μg/mL). (C) PA spectral response of Bi₂Se₃ nanoplates, EOGO, GO, and Au NR (concentration: 1 mg/mL). The error bars represent +/- 1 standard deviation. PA, photoacoustic; NIR, near infrared; ICG, indocyanine green; MB, methylene blue; EOGO, edge-oxidized graphene oxide; GO, graphene oxide; Au NR, gold nanorod.

Fig. S6 *In vitro* PA characteristics of Bi₂Se₃ nanoplates and ICG at 800 nm and 1064 nm. (A) Experimental setup. (B) Quantified PA amplitude of the Bi₂Se₃ nanoplates and ICG at 800 nm and 1064 nm. The error bars represent +/- 1 standard deviation. PA, photoacoustic; OPO, optical parametric oscillator; PS, prism; US, ultrasound; TR, ultrasound transducer; ICG, indocyanine

Fig. S7 PA contrast quantification in all *in vivo* imaging. (A) PA contrast between the bladder area and the background. (B) PA contrast between the GI area and the background after 2 hours and 7 hours. (C) PA contrast between the SLNs and the background. The error bars represent +/- 1 standard deviation. The PA contrasts were calculated as: (PA_{region of interest} – PA_{background})/PA_{background}. PA, photoacoustic; GI, gastrointestinal; SLN, sentinel lymph node.

Fig. S8 Photograph of the dissected mouse acquired after *in vivo* PA imaging of GI tract. The GI tract is dyed black, the color of Bi₂Se₃ dispersion. PA, photoacoustic; GI, gastrointestinal; H, head; T, tail.