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I. NUMERICAL EVALUATION OF THE CONDUCTANCE CORRECTION DUE TO WEAK
LOCALIZATION

Our goal is to evaluate integrals of three related forms from [M. M. Glazov and L. E. Golub, Semiconductors 40,
1209 (2006)][1] that were originally written as
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where LmN (x) are generalized Laguerre polynomials. For large N values, it is difficult to evaluate these polynomials
numerically, and cancellations between small and large values in the polynomial and exponential terms at large x can
cause additional numerical problems. Before continuing with integral evaluations, we redefine these integrals in terms
of a simple parent integral,
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We can rewrite Fmn (q) in a more convenient way by using some of the orthogonal-polynomial structure of the gener-
alized Laguerre polynomials. The weight function that defines their orthogonality is

wm(x) = xme−x for x ∈ [0,∞), (2)

and it is common to combine orthogonal polynomials with their weight functions and normalization factors to define
a convenient orthonormal basis,
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In terms of these functions, the integral reduces to an integral between a Laguerre basis function and a complex
exponential,
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The inner product between Laguerre basis functions is
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We will evaluate these two types of integrals numerically with a common quadrature, to be determined.
The other important numerical ingredient is the stable evaluation of gmn . The polynomials are defined by a three-

term recursion relation,
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These recurrence relations are not necessarily numerically stable, and require numerical evaluations of the inner
product to check orthogonality and perform Gram-Schmidt orthogonalization.

The final ingredient of a numerical method is a quadrature rule. To make this process as straightforward as possible,
we map the [0,∞) domain to (−∞,∞) and use a uniform quadrature defined by a grid spacing and upper and lower

cutoff values. We use the variable y = ln(ex − 1) in Eq. (4) and z = ln(e
√
x − 1) in Eq. (5),
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With the inner product available, we can test the numerical stability of the three-term recurrence as measured by
a loss of orthogonality. From initial numerical tests, the recurrence in terms of gmn appears to be stable and loss
of orthogonality seems to be related to some combination of quadrature errors and underflow to zero in the simple
recurrence implementation.

The intended application of these integrals contains an infinite sum over n for Fmn (q) and this sum is very slow to
converge in some parameter regimes, particularly when Re(q) is large and the 1/q suppression of the integrals is offset
by a q prefactor. In this limit, the exponential behaves like a delta function, and only Pn has a nonzero asymptotic
value that we derive from the asymptotic expansion of the Laguerre polynomials as Bessel functions of the first kind,
J0(x), for large n as
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The first-order asymptotic correction to σa in Eq. (35) of the original paper is
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and the accompanying σb in Eq. (37) does not have any terms that converge as slowly. The infinite sum can be
grouped into a finite sum and an evaluation of the Riemann zeta function, ζ(x), as
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Adding this correction helps to converge calculations for large lB/l. It is possible to construct a more general
asymptotic expansion that expands all the integrals in powers of 1/

√
n and reduce all integral to moments of Bessel

functions. This is necessary to thoroughly converge the infinite summations over n.
To evaluate the asymptotic expansions, we first define the function
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where Jm is the Bessel function of the first kind. We obtain the following asymptotic expansions in terms of jm:
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In our evaluation of the conductance shift, we have switched from computing the integrals directly with 104 quadrature
points to evaluating the asymptotic expressions for N ≥ 100 and have truncated the sums for σa and σb at N = 104.

To perform fits to the experiment, we first performed an evaluation of the conductance shift ∆σ = σa + σb over a
2d grid of values of τφ and τSO over a range of B-field values in the interval [0.1, 10] mT. We then compared these
∆σ(B) curves to postprocessed experimental data to obtain a misfit for each of the (τφ, τSO) parameter values. We
provide all code used to perform the postprocessing and numerical evaluation of the conductance shift in the included
supplementary software files.

II. FITTING WITH THE HLN MODEL

We use the HLN model[2] to fit the magneto-resistance curves:
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The fitting range is -10 mT to 10 mT. The data points within -3 mT to 3 mT are weighted by a factor of 20 to keep
the region that contains the most information (theWL to WAL crossover point) fit well. The fitting gives the spin
relaxation time τrelax = ~/(4eDBSO), which is different from the spin precession time τSO. The energy splitting ∆SO

is obtained by relating τrelax with Ω3 through the D’yakonov-Perel’ spin relaxation mechanism: 1/τrelax = 2|Ω3|2τ3.
It is assumed that the scattering is isotropic, which gives τ3 = τ1 = τtr, where τn =

∫
dθW (θ)(1− cos(nθ)), and W (θ)

is the scattering probability density.
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