Supporting Information

Robust N-doped Carbon Aerogels Strongly Coupled with Iron-Cobalt Particles as Efficient Bifunctional Catalysts for Rechargeable Zn–Air Batteries

Gengtao Fu,^a Yu Liu,^a Yifan Chen,^c Yawen Tang,^c John B. Goodenough^{b,*}, Jong-Min Lee^{a,*}

^a School of Chemical and Biomedical Engineering, Nanyang Technological University,

Singapore 637459, Singapore. E-mail: jmlee@ntu.edu.sg

^b Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States. E-mail: jgoodenough@mail.utexas.edu

^c Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Part I: Experimental

Materials and reagents

Potassium hexacyanoferrate(II) (K₄Fe(CN)₆), potassium hexacyanocobaltate (III) (K₃Co(CN)₆), chitosan (CS, 85% deacetylate) were purchased from Alfa Aesar. Graphene oxided was purchased from Nanjing XFNANO Materials Tech Co., Ltd. Commercial 20% Pt/C and RuO₂ were purchased from Johnson Matthey Chemicals Ltd. All reagents and chemicals were used without further purification.

Synthesis of 3D Porous FeCo/N-DNC Aerogels

Typically, 1 ml K₄Fe(CN)₆ (0.50 M) and 1 ml K₃Co(CN)₆ (0.50 M) aqueous solutions were mixed at room temperature. It was then mixed with a 20 mL aqueous solution containing chitosan (10 mg ml⁻¹) and 20 mg GO. After continuous ultrasonic for 5 min, the homogeneous K₄Fe(CN)₆/K₃Co(CN)₆-CS-GO hydrogel was formed. Subsequently, the K₄Fe(CN)₆/K₃Co(CN)₆-CS-GO aerogel was obtained through a freeze-drying process (20 h) by using the K₄Fe(CN)₆/K₃Co(CN)₆-CS-GO hydrogel as a precursor that was annealed at 600 °C for 3 h in H₂ at a heating rate of 5 °C min⁻¹. Once cooled down to room temperature, the obtained loose product was washed with distilled water and absolute alcohol several times and subsequently dried at 60 °C to yield the FeCo/N-DNC aerogels.

Physicochemical characterization

The phase purity and crystallinity of the products were identified by X-ray powder diffraction (XRD) on a Rigaku MiniFlex 600 I diffractometer with Cu K α radiation (λ = 0.15406 nm). Thermogravimetric analysis (TGA) of the samples was carried out with

a Perkin-Elmer thermal analysis system. Measurements were made by heating from 40 to 800 °C at a heating rate of 10 °C min⁻¹ under air atmosphere. X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo VG Scientific ESCALAB 250 spectrometer with an Al K α radiator. The binding energy was calibrated by means of the C 1s peak energy of 284.6 eV. Raman spectra were recorded on a Raman spectrometer (LabRAM HR800, λ =514 nm). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were performed with a Hitachi S5500 SEM/STEM. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were performed with a JEOL 2010F TEM/STEM operated at 200 kV. The N₂ adsorption-desorption experiment was operated at 77 K on a Micromeritics ASAP 2050 system. The pore size distributions were measured with 4-probe conductivity measurements on ST-2722 semiconductor resistivity of the powder tester (Suzhou Jingge Electronic Co., Ltd., PR China) under a pressure of 10 MPa.

Electrochemical Measurements

Electrochemical measurements were carried out with a CHI 760E electrochemical analyzer (Shanghai, Chenghua Co.). A standard three-electrode system was used, including a rotating disk electrode (RDE) as the working electrode (0.196 cm²), a platinum wire as the auxiliary electrode, and a Ag/AgCl (1 M NaCl) electrode as the reference electrode. All potentials are reported versus the reversible hydrogen electrode (RHE), and for conversion of the obtained potential (vs. Ag/AgCl) to RHE; the

following equation was used: $E_{RHE} = E_{Ag/AgCl} + 0.0592 \text{ pH} + E_{Ag/AgCl}^{0}$; $\{E_{Ag/AgCl}^{0}$ (in 1 M KCl) = +0.235 V; pH = 12.9 for 0.1 M KOH}.

The catalyst ink was prepared by ultrasonically dispersing a mixture of 5 mg of catalyst, 1 mL ethanol, and 20 μ L of 5 wt.% Nafion solution. 10 μ L of the catalyst ink was pipetted and spread onto the electrode. The loading of the studied catalysts was 250 μ g cm⁻². For the ORR test, the background current was measured under N₂ atmosphere at the identical rotation speed and scan rate as conducted under O₂. The ORR activities of the catalysts were measured via the RDE voltammograms in a 0.1 M KOH electrolyte at predefined rotation rates and a scan rate of 5 mV s⁻¹. Before testing, O₂ was passed through the electrolyte for at least 20 min to saturate the electrolyte with O₂. To remove the capacitive current of the working electrode, the background current was measured by running the above electrodes in N₂-saturated 0.1 M KOH and then subtracted from the ORR polarization curve. For the OER, the polarization curves were recorded from 1.1 to 2.0 V at a scan rate of 5 mV s⁻¹ with a rotation speed of 1600 rpm to spin off the oxygen evolved during the testing.

Zn-air Battery Measurements

The Zn–air battery tests were performed with a homemade Zn-air cell. The air cathode consisted of the hydroholic carbon paper with a gas diffusion layer on the air-facing side and a catalyst layer on the water-facing side. The catalyst layer was made by loading the catalyst ink onto the carbon paper by drop-casting, with a loading of 10 mg cm⁻² for all the catalysts. A polished Zn plate with a thickess of 0.3 mm was used as the anode. A 0.2 M ZnCl₂ + 6 M KOH mixed solution was used as the electrolyte.

The gas diffusion layer has an effective area of 0.5 cm² and allows O₂ from ambient air to reach the catalyst sites. A Land CT2001A system was used to carry out the cycling test with a five-minute rest time between each discharge and charge at a current density of 10 mA cm⁻². Each discharge and charge period were set to be 10 min. Based on the discharge curves at a constant current density of 5 mA cm⁻², we can calculate the corresponding specific capacity (mAh g_{Zn}^{-1}) and energy density (Wh kg_{Zn}^{-1}) by the following equations, respectively.

 $\begin{aligned} Specific \ capacity &= \frac{current \ \times \ service \ hours}{weight \ of \ consumed \ Zn} \\ Energy \ density &= \frac{current \ \times \ service \ hours \ \times \ average \ discharge \ voltage}{weight \ of \ consumed \ Zn} \end{aligned}$

Part I: Figures and Tables

Fig. S1 The photographs of (a) CS solution and (b) $K_4Fe(CN)_6/K_3Co(CN)_6$ -CS hydrogel.

Fig. S2 (a) TGA curve of FeCo/N-DNC aerogels; (b) XRD pattern of FeCo/N-DNC aerogels after TGA measurement.

Fig. S3 TEM images of FeCo/N-DNC aerogels at different magnifications.

Fig. S4 EDX spectrum of FeCo/N-DNC aerogels and corresponding atom contents.

Fig. S5 High-resolution XPS spectra of (a) Fe 2p and (b) Co 2p core levels in FeCo/N-DNC aerogels.

Fig. S6 (a) TEM image and (b) XRD pattern of Fe/N-DNC aerogels; (c) High-resolution XPS spectra of (c) C 1s and (d) N 1s core levels.

Fig. S7 (a) TEM image and (b) XRD pattern of Co/N-DNC aerogels; (c) High-resolution XPS spectra of (c) C 1s and (d) N 1s core levels.

Fig. S8 Chronoamperometric responses of catalysts at 0.7 V in O_2 -saturated 0.1 M KOH (percentage of current retained versus operation time).

Fig. S9 (a) Tafel plots derived from Figure 6a; (b) Electrical conductivity of FeCo/N-DNC aerogels and mixed FeCo+N-DNC aerogels; (c) Chronoamperometric responses of FeCo/N-DNC aerogels and RuO₂ catalysts at 1.65 V in O₂-saturated 0.1 M KOH;

Fig. S10 Digital images of the rechargeable Zn-air battery recorded from the different directions.

Fig. S11 SEM images of FeCo/N-DNC aerogels (a) before and (b) after the charge/discharge cycles.

Fig. S12 TGA curve of FeCo/N-DNC aerogels after the charge/discharge cycles.

Number	Catalyst	$E_{1/2}$ / V	Electrolyte	Loadings (mg cm ⁻²)	Ref
1	FeCo/N-DNC	0.81	0.1 M KOH	0.25	this work
2	Mo-N/C@MoS2	0.81	0.1 M KOH	~	1
3	BFNCNTs	0.81	0.1 M KOH	0.75	2
4	FeCo@NC-750	0.80	0.1 M KOH	0.80	3
5	Co ₃ O ₄ /N-rGO	0.79	0.1 M KOH	0.128	4
6	N, S-CN	0.77	0.1 M KOH	0.20	5
7	Co/CoOx	0.76	0.1 M KOH	0.51	6
8	NiCo@N-C-3	0.76	0.1 M KOH	0.4	7
9	Co/N-C-800	0.74	0.1 M KOH	0.25	8
10	Mn oxide	0.73	0.1 M KOH	~	9
11	NiCo ₂ S ₄ @N/S-rGO	0.72	0.1 M KOH	0.283	10
12	NGSH	0.70	0.1 M KOH	0.26	11
13	N-graphene/CNT	0.69	0.1 M KOH	0.20	12
14	NiCo ₂ S ₄ /CNT	0.69	1.0 M KOH	0.248	13
15	NiO/CoN	0.68	0.1 M KOH	0.20	14
16	Co ₃ O ₄ /2.7Co ₂ MnO ₄	0.68	0.1 M KOH	0.09	15
17	PCN-CFP	0.67	0.1 M KOH	0.20	16
18	NiCo ₂ O ₄ /G	0.56	0.1 M KOH	0.41	17

Table S1. Comparison of the ORR activity of FeCo/N-DNC aerogels with other ORR

 catalysts previously reported.

Number	Catalyst	Overpotential / V	Electrolyte	Catalyst loadings	Ref
		(10 mA cm^{-2})		$(mg cm^{-2})$	
1	FeCo/N-DNC	0.39	0.1 M KOH	0.25	this work
2	Fe-N ₄ SAs/NPC	0.202	0.1 M KOH	~	18
3	5.0%Ce-NiFe-LDH/CNT	0.227	1 M KOH	0.2	19
4	RuP/NPC	0.31	1 M KOH	0.21	20
5	CoNi@NCNT/NF	0.31	0.1 M KOH	0.408	21
6	CoNi-NS/rGO	0.33	1 M KOH	1.0	22
7	CoSx@PCN/rGO	0.34	0.1 M KOH	0.408	23
8	C-MOF-C2-900	0.35	0.1 M KOH	0.2	24
9	NNU-23	0.365	0.1 M KOH	1.0	25
10	Co@Co ₃ O ₄ @NC-900	0.37	0.1 M KOH	~	26
11	FeCo-Nx-CN-30	0.37	0.1 M KOH	0.1	27
12	20% Ir/C	0.38	0.1 M KOH	0.14	9
13	CoS ₂ (400)/N, S-GO	0.38	0.1 M KOH	0.53	28
14	NCNT/CoO-Co	0.38	1.0 M KOH	0.21	29
15	Co/N-CNT	0.39	0.1 M KOH	0.20	30
16	CoZn-NC-700	0.39	0.1 M KOH	0.24	31
17	20% Ru/C	0.39	0.1 M KOH	0.14	9
18	FeNx-embedded PNC	0.395	0.1 M KOH	0.14	32
19	NiCo/NLG-270	0.4	1.0 M KOH	0.4	33
20	NiCo/PFC aerogels	0.40	0.1 M KOH	0.13	34
21	NGSH	0.40	0.1 M KOH	0.26	11
22	PCN-CFP	0.4	0.1 M KOH	0.20	16
23	NC@Co-NGC DSNC	0.41	0.1 M KOH	0.40	35
24	N-graphene/CNT	0.42	0.1 M KOH	0.20	12
25	TiC-carbon nitride	0.42	0.1 M KOH	1.40	36
26	Co@Co ₃ O ₄ /NC-1	0.42	0.1 M KOH	0.21	37
27	N, S-CN	0.45	0.1 M KOH	0.20	5
28	NiCo ₂ O ₄ -graphene	0.46	0.1 M KOH	2.00	38
29	CCH-2/C	0.51	0.1 M KOH	0.18	39
30	NiCo@N-C	0.53	0.1 M KOH	0.4	7
31	Mn oxide	0.54	0.1 M KOH	~	9
32	Co ₃ O ₄ /2.7Co ₂ MnO ₄	0.54	0.1 M KOH	0.09	15

Table S2. Comparison of the OER activity of FeCo/N-DNC aerogels with other OERcatalysts previously reported.

Catalyst	Electrolyte	Specific capacity	Energy density	Cycle Condition	Ref
		$(\mathbf{mAh}\ \mathbf{g}_{\mathbf{Zn}}^{-1})$	(Wh kg _{Zn} -1)	(mA cm ⁻²)	
FeCo/N-DNC	6.0 M KOH + 0.20 M ZnCl ₂	804	988	5	This work
$Pt/C + RuO_2$	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	699	870	5	This work
BHPC-950	6.0 M KOH	797	963	20	40
Mo-N/C@MoS ₂	6.0 M KOH + 0.20 M Zn(Ac) ₂	~	846.07	5	1
NGM-Co	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	750	840	2	41
NPMC-1000	6.0 M KOH	735	835	2	42
CNT/graphene	6.0 M KOH	712	872	5	43
Porous C fiber film	6.0 M KOH + 0.20 M Zn(Ac) ₂	660	838	5	44
NCNF	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	626	776	10	45
Porous C fiber film	6.0 M KOH + 0.20 M Zn(Ac) ₂	626	776	10	44
NCNT/CoO-NiONiCo	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	594	713	7	29
NCO-A ₁	6.0 M KOH	580	~	20	46
NCNF/Co _x Mn _{1-x} O	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	581	695	7	47
Ag-Cu on Ni foam	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	572	641	20	48
CoO/N-CNT+NiFe	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	570	700	20	49
LDH					
CoZn-NC-700	6.0 M KOH + 0.10 M ZnCl ₂	578	694	10	31
Ni ₃ Fe/N-C	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	528	634	10	50
Co ₃ O4/N-rGO	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	550	649	6	4
NCNT/CoO-NiONiCo	$6.0 \text{ M KOH} + 0.20 \text{ M ZnCl}_2$	545	615	20	29
NiCo ₂ S ₄ /N-CNT	6.0 M KOH + 0.20 M ZnCl ₂	431.1	554.6	10	13

Table S3. Comparison of the performances of Zn-air batteries with various bifunctional electrocatalysts.

Part II: References

- 1. I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang and S. Mu, *Adv. Funct. Mater.*, 2017, **27**, 1702300.
- 2. R. Nandan and K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843-16853.
- 3. P. Cai, S. Ci, E. Zhang, P. Shao, C. Cao and Z. Wen, *Electrochim. Acta*, 2016, **220**, 354-362.
- 4. Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, *Adv. Mater.*, 2017, **30**, 1703657.
- 5. K. Qu, Y. Zheng, S. Dai and S. Z. Qiao, Nano Energy, 2016, 19, 373-381.
- B. Hua, M. Li, Y.-F. Sun, Y.-Q. Zhang, N. Yan, J. Chen, T. Thundat, J. Li and J.-L. Luo, *Nano Energy*, 2017, **32**, 247-254.
- Y. Fu, H.-Y. Yu, C. Jiang, T.-H. Zhang, R. Zhan, X. Li, J.-F. Li, J.-H. Tian and R. Yang, *Adv. Funct. Mater.*, 2018, 28, 1705094.
- Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen and C. Li, *Nanoscale*, 2014, 6, 15080-15089.
- 9. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 10. Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. interfaces, 2013, 5, 5002-5008.
- 11. G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang and F. Wei, *Small*, 2014, **10**, 2251-2259.
- 12. Z. Wen, S. Ci, Y. Hou and J. Chen, Angew. Chem. Int. Ed., 2014, 53, 6496-6500.
- 13. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao and W. Hu, *Nano Energy*, 2017, **31**, 541-550.
- 14. J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, *ACS Nano*, 2017, **11**, 2275-2283.
- 15. D. Wang, X. Chen, D. G. Evans and W. Yang, Nanoscale, 2013, 5, 5312-5315.
- 16. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2015, 54, 4646-4650.
- 17. D. U. Lee, B. J. Kim and Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.
- 18. Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W.-C. Cheong, R. Shen

and A. Han, Angew. Chem. Int. Ed., 2018, 130, 8750-8754.

19. H. Xu, B. Wang, C. Shan, P. Xi, W. Liu and Y. Tang, *ACS Appl. Mater. interfaces*, 2018, **10**, 6336-6345.

20. Q. Qin, H. Jang, L. Chen, G. Nam, X. Liu and J. Cho, *Adv. Energy Mater.*, 2018, **0**, 1801478.

21. W. Niu, S. Pakhira, K. Marcus, Z. Li, J. L. Mendoza-Cortes and Y. Yang, *Adv. Energy Mater.*, 2018, **8**, 1800480.

22. T. Wang, J. Wu, Y. Liu, X. Cui, P. Ding, J. Deng, C. Zha, E. Coy and Y. Li, *Energy Stor. Mater.*, 2018, **16**, 24-30.

23. W. Niu, Z. Li, K. Marcus, L. Zhou, Y. Li, R. Ye, K. Liang and Y. Yang, *Adv. Energy Mater.*, 2018, **8**, 1701642.

24. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431.

25. W. Xiao-Li, D. Long-Zhang, Q. Man, T. Yu-Jia, L. Jiang, L. Yafei, L. Shun-Li, S. Jia-Xin and L. Ya-Qian, *Angew. Chem. Int. Ed.*, 2018, **57**, 9660-9664.

26. Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang and Y. Xia, *J. Mater. Chem. A*, 2018, 6, 1443-1453.

27. S. Li, C. Cheng, X. Zhao, J. Schmidt and A. Thomas, *Angew. Chem. Int. Ed.*, 2018, 130, 1874-1880.

28. P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, *ACS Catal.*, 2015, **5**, 3625-3637.

29. X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, *Angew. Chem. Int. Ed.*, 2015, **54**, 9654-9658.

30. Y. Liu, H. Jiang, Y. Zhu, X. Yang and C. Li, *J. Mater. Chem. A*, 2016, **4**, 1694-1701.

31. B. Chen, X. He, F. Yin, H. Wang, D. J. Liu, R. Shi, J. Chen and H. Yin, *Adv. Funct. Mater.*, 2017, **27**, 1700795.

32. L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao and J. Zapien, *ACS nano*, 2018, **12**, 1949–1958.

33. X. R. Wang, J. Y. Liu, Z. W. Liu, W. C. Wang, J. Luo, X. P. Han, X. W. Du, S. Z. Qiao and J. Yang, *Adv. Mater.*, 2018, **30**, 1800005.

34. G. Fu, Y. Chen, Z. Cui, Y. Li, W. Zhou, S. Xin, Y.-w. Tang and J. B. Goodenough, *Nano Lett.*, 2016, **16**, 6516–6522.

35. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.*, 2017, **29**, 1700874.

36. T. Y. Ma, J. L. Cao, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2016, **55**, 1138-1142.

37. A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Ed.*, 2016, **55**, 4087–4091.

38. S. Chen and S.-Z. Qiao, ACS Nano, 2013, 7, 10190-10196.

- 39. Y. Wang, W. Ding, S. Chen, Y. Nie, K. Xiong and Z. Wei, *Chem. Commun.*, 2014, 50, 15529-15532.
- 40. M. Yang, X. Hu, Z. Fang, L. Sun, Z. Yuan, S. Wang, W. Hong, X. Chen and D. Yu, *Adv. Funct. Mater.*, 2017, **27**, 1701971.
- 41. C. Tang, B. Wang, H.-F. Wang and Q. Zhang, Adv. Mater., 2017, 29, 1703185.
- 42. J. Zhang, Z. Zhao, Z. Xia and L. Dai, Nat Nano, 2015, 10, 444-452.
- 43. J. Yang, H. Sun, H. Liang, H. Ji, L. Song, C. Gao and H. Xu, *Adv. Mater.*, 2016, 28, 4606-4613.
- 44. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28, 3000-3006.
- 45. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28, 3000-3006.
- 46. M. Prabu, K. Ketpang and S. Shanmugam, Nanoscale, 2014, 6, 3173-3181.
- 47. X. Liu, M. Park, M. G. Kim, S. Gupta, X. Wang, G. Wu and J. Cho, *Nano Energy*, 2016, **20**, 315-325.
- 48. Y. Jin and F. Chen, Electrochim. Acta, 2015, 158, 437-445.
- 49. Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang and H. Dai, Nat. Commun., 2013, 4, 1805.
- 50. G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, **7**, 1601172.