Supporting Information

Heterogeneous Co(OH)₂ Nanoplates/Co₃O₄ Nanocubes Enriched with

Oxygen Vacancies Enable Efficient Oxygen Evolution Reaction

Electrocatalysis

Hui Xu, ^{a1} Jingjing Wei, ^{a1} Min Zhang, ^a Chaofan Liu, ^a Yukihide Shiraishi,^b Caiqin Wang, ^{c*} and Yukou Du^{a, b*}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

^b Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884,

Japan

^c College of Science, Nanjing Forestry University, Nanjing, 210000 PR China

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: duyk@suda.edu.cn (Y. Du)

Hui Xu and Jingjing Wei contributed equally to this manuscript.

Experimental section

Chemical and reagents

Cobalt nitrate $(Co(NO_3)_2 \cdot 6H_2O)$, analytical reagent), ethanol $(CH_3CH_2OH, 99\%)$, PVP (Mw. 55000), hexamethylenetetramine (HMT), KOH, Nafion, and isopropanol were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals were used as purchased without further purification.

Synthesis of Co(OH)₂ nanoplates

In a typical synthesis, $0.582 \text{ g Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, 0.2 g PVP (Mw. 55000), and 0.28 g hexamethylenetetramine (HMT) were dissolved in 80 mL of a 9:1 mixture of deionized H₂O and ethanol. The reaction solution was then refluxed at about 95 °C for 2 h. The nanoplates were then isolated by centrifugation and washed with water several times.

Synthesis of Co₃O₄ nanocubes

0.291 g Co(NO₃)₂·6H₂O was dissolved in 20 mL 0.1 M NaOH solution. The obtained

solution was transferred into 100 mL autoclave with a Teflon liner at 200 °C, and kept for 24 h. The obtained product was filtered, and then washed with H_2O and ethanol for several times, and dried naturally in air.

Typical preparation of Co(OH)₂ nanoplates/Co₃O₄ nanocubes

 $0.150 \text{ g Co}(\text{OH})_2$ nanoplates and $0.080 \text{ g Co}_3\text{O}_4$ nanocubes were dispersed into 10 mL ethanol, and then was sonicated for 60 min to form a black mixture. The obtained mixture was filtered, and dried in air naturally.

Characterizations

Transmission electron microscope (TEM) was conducted on a HITACHI HT7700 at an acceleration voltage of 120 kV. Energy dispersive X-ray (EDX) patterns were carried out on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. Powder X-ray diffraction (PXRD) patterns were collected on X'Pert-Pro MPD diffractometer (Netherlands PANalytical) with a Cu K α X-ray source ($\lambda = 1.540598$ Å). X-ray photoelectron spectroscopy spectra (XPS) were conducted on a Thermo Scientific ESCALAB 250 XI X-ray photoelectron spectrometer. The inductively coupled plasma atomic emission spectroscopy (ICP-AES) was also conducted to study the compositions of the samples.

Electrochemical measurements

The electrochemical properties of the samples were measured with a CHI 660e electrochemistry workstation using a standard three-electrode cell at room temperature. The sample-coated glassy carbon electrode, a Ag/AgCl electrode, and a carbon rod were selected as working electrode, a reference electrode, and a counter electrode, respectively. To prepare the working electrode, 2 mg samples were first dissolved in a solution (1:9, v/v) containing Nafion (5%) and water (2 mL) by sonication. Then, 20 μ L freshly prepared suspension was dropped on the surface of pre-polished glassy carbon electrode (GCE, 3 mm in diameter) and dried at room temperature for 12 h before measurements. For comparison, the Ir/C catalysts (20 wt%, 2-5 nm Ir nanoparticles) purchased from Johnson Matthey (JM) Corporation were selected as the reference catalyst. Before the OER tests, the cyclic voltammetry

(CV) for these electrocatalysts were operated in 1.0 M KOH solution at the scanning rate of 50 mV s⁻¹ to activate the electrocatalysts. The polarization curves were acquired using linear sweep voltammetry (LSV) for OER in 1.0 M KOH solution at the scanning rate of 5 mV s⁻¹. iR drop was compensated at 95% for measurements. The Tafel plots were derived from the OER polarization curves (1 mV s⁻¹) and constructed by the Tafel equation. It is worth noting that all the potentials measured were calibrated to reverse hydrogen electrode (RHE) and the state-of-the-art Ir/C catalyst was also employed as the baseline catalysts for all the electrochemical measurements.

Calculation of ECSA

The calculation of the electrochemical surface areas (ECSA) are based on the measured double layer capacitance of the catalysts modified electrode in 1.0 M KOH according to previous published report. Briefly, a potential range where no apparent Faradaic process happened was determined firstly using the static CV. The charging current i_c was measured from the CVs at different scan rates. The relation between i_c , the scan rate (v) and the double layer capacitance (C_{DL}) was given in eq 1. Therefore, the C_{DL} is then calculated according to: C_{DL}=d (Δj (0 V vs. RHE))/2dv.

$$i_c = v C_{DL} \qquad (1)$$

For the estimation of ECSA, a specific capacitance (C_S) value $C_S = 0.040$ mF cm⁻² in 1.0 M KOH.

$$ECSA = C_{DL}/C_S$$
(2)

Fig.S1 Size distribution of Co(OH)₂ NPs.

Fig.S2 Elemental line-scan profile of Co(OH)₂ NPs.

Fig.S3 Representative SEM images of Co₃O₄ NCs with different magnifications.

Fig.S4 Size distribution of Co₃O₄ NCs.

Fig.S5 Representative TEM images of Co₃O₄ NCs with different magnifications.

Fig.S6 Onset potentials of $Co(OH)_2$ NPs/Co₃O₄ NCs, $Co(OH)_2$ NPs, Ir/C, and Co_3O_4 NCs.

Fig.S7 Representative TEM images of Co(OH)₂ NPs/Co₃O₄ NCs with different magnifications after long-term electrochemical test.

Fig.S8 CV curves of (a) $Co(OH)_2$ NPs/Co₃O₄ NCs, (b) $Co(OH)_2$ NPs, and (c) Co_3O_4 NCs with different scan rates and (d) their double layer currents vs scan rates plots.

Catalyst	η(mV)	Electrolyte	Reference
Co(OH) ₂ NPs/Co ₃ O ₄ NCs	281	1.0 M KOH	This work
Co ₃ O ₄ /Co(OH) ₂ hybrids	370	1.0 M KOH	New J. Chem. 2018, 42, 4215
CoFeP NSs	305	1.0 M KOH	J. Colloid Interface Sci.2 2018,
			530, 146
CoO _x -ZIF	318	1.0 M KOH	Adv. Funct. Mater. 2017, 1702546
IrOx	370	1.0 M KOH	J. Am. Chem. Soc.2012, 134, 17253
NF@NC-CoFe ₂ O ₄	350	1.0 M KOH	Adv. Mater. 2017, 29, 1604437
Co@Co-Bi/Ti	327	1.0 M KOH	Nanoscale 2017, 9, 16059
C03O4@C0O SC	430	1.0 M KOH	Nat. Commun. 2015, 6, 8
Ni ₃ Se ₄	320	1.0 M KOH	Nanoscale 2018, 10, 5163
ZnCo LDH	>330	1.0 M KOH	J. Mater. Chem. A, 2014, 2, 13250
NiZnP NSs	290	1.0 M KOH	J. Colloid Interface Sci.2 2018, 530, 58
Fe ₃ O ₄ cubes	336	1.0 M KOH	ACS Energy Lett. 2018, 3, 861- 868
Ir _{0.46} Co _{0.54} O _y nanotubes	310	1.0 M NaOH	ACS Appl. Mater. Interface, 2017, 9, 35057
Ni ₅ P ₄	470	1.0 M KOH	Angew. Chem. Int. Ed. 2015, 54, 12361
CoMn LDH	324	1.0 M KOH	J. Am. Chem. Soc. 2014, 136, 16481
NiCo-LDH	290	1.0 M KOH	J. Power Sources 2015, 278, 445-451
CoO _x -ZIF	318	1.0 M KOH	Adv. Funct. Mater. 2017, 1702546
Titanium carbide-CoBDC	410	0.1 M KOH	ACS Nano, 2017, 11, 5800
MAF-X27-OH	387	1.0 M KOH	J. Am. Chem. Soc.2016, 138, 8336
CoSe ₂ nanosheets	320	0.1 M KOH	J. Am. Chem. Soc. 2014, 136, 15670
Ni-Co oxides layers	325	1.0 M KOH	ACS Nano 2014, 8, 9518
RuO ₂	387	0.1 M KOH	J. Am. Chem. Soc. 2014, 136, 7077

Table S1 Comparisons of OER activity for various electrocatalysts in alkaline condition (η : overpotential at the current density of 10 mA cm⁻²).

Au@Co ₃ O ₄	378	1.0 M KOH	Adv. Mater. 2014, 26, 3950
C03O4@C0O SC	430	1.0 M KOH	Nat. Commun. 2015, 6, 8.
Ni-Co oxides layers	325	1.0 M KOH	ACS Nano 2014, 8, 9518