Supporting Information

Synthesis of ultrathin WSe₂ nanosheets and their high-

performance catalysis for conversion of amines to imines

Bing-Qian Zhang, Jing-Shuai Chen, He-Lin Niu, Chang-Jie Mao, Ji-Ming Song*

School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, PR China

> Tel:+86 0551 63861279 : Fax: +86 0551 63861279 *E-mail: jiming@ahu.edu.cn*

Chemicals

Tungsten hexachloride (WCl₆, 99.9%), selenium powder (Se, 99.5%), oleylamine (OLA, 70%), oleic acid (OA, 90%), 1-dodecanethiol (1-DDT, 98%), 1-octadecene (ODE, 90%), N-Methyl-2-pyrrolidinone (NMP, 98%), p-benzoquinone (BQ, 98%), 2-methylbenzylamine 98%). benzylamine $(C_7H_0N.$ 99%), $(C_9H_{13}N,$ 4methylbenzylamine (C₉H₁₃N, 98%), 4-chlorobenzylamine (C₇H₈ClN, 98%), 4fluorobenzylamine (C₇H₈FN, 99%) and 2, 4-difluorobenzylamine (C₇H₇F₂N, 98%) were ordered from Aladdin Reagent Co. Ltd. Ethanol (CH₃CH₂OH, 99%), ethyl acetate (C₄H₈O₂, AR) and chloroform (CHCl₃, AR) were purchased from the Sinopharm Chemical Reagent Company. All chemicals were used as received without further purification.

Instrumentation

The crystal phase was characterized by a Rigaku D/max-RA X-ray diffractometer (XRD). X-ray photoelectron spectroscopy (XPS) was performed by using a VG ESCA scientific theta probe spectrometer. The size and initial morphology of the product were measured using a JEOL-2100 transmission electron microscopy (TEM) and a Micro Nano AFM-III atomic force microscope (AFM). The diffuse reflectance spectra and fluorescence spectra of samples were recorded by a Shimadzu UV-3600 PC UV-vis spectrometer, a PerkinElmer LS-55 Fluorescence Spectrometer, respectively. The N₂ adsorption-desorption isotherm of samples were measured by a Micromeritics ASAP2020M+C fully automatic specific surface and micro/mesoporous physical adsorption analyzer. The yield of benzylamine to imine was determined using a Shimadzu GC-2010 plus gas chromatography (GC) and a

Scientific TSQ 8000 EVO gas chromatography-mass spectrometry (GC-MS).

Supplementary Figures and Tables

Fig. S1. Schematic diagram of the reaction device.

Fig. S2. Schematic illustration of the colloidal synthesis procedure of WSe₂ nanosheets

Fig. S3. fluorescence emission spectra of the WSe_2 nanosheets dispersed in solvent NMP excited by 380 nm, the inset shows photo pictures of WSe_2 solution without and with light irradiation.

Table S1. Photocatalytic aerobic benzylamine oxidation over the photocatalysts under different

Catalyst	Temp	Oxygen	Light Source	Solvent	Time	Yield	Ref
	(°C)	Source			(h)	(%)	
WSe ₂	60	air	5 W white LED lamp	water	24	100	This
							work
AgI/AgVO ₃	-	air	300 W Xe lamp	acetonitrile	12	85	2.6
			(>400 nm)				36
Amorphous/crystallin		O ₂	100 W COB white	acetonitrile	8	93	37
e Nb ₂ O ₅	80		LED				
Conjugated			blue LED (460 nm)	acetonitrile	24	>99	42
Microporous	r.t.	O ₂	(1.2 W/cm ²)				

reaction conditions compared to the current literature.

Poly(Benzooxadiazol

e) networks

WS ₂	50	O ₂	60 W white LED lamp	acetonitrile	30	94	53
Fe(bpy) ₃ /npg-C ₃ N ₄	-	O ₂	20 W white cold LED (> 400 nm)	acetonitrile	8	92	54
Single-crystalline TiO ₂	-	O ₂	Xe lamp(>420nm)	acetonitrile	4	73	55
Hollow microporous organic	r.t.	O ₂	blue LED (460 nm) (0.8 mW/cm ²)	toluene	24	99	56
NH ₂ -MIL-125	-	O ₂	300 W Hg lamp (>420 nm)	acetonitrile	12	63	57
5wt%Cu/graphene	40	O ₂	300 W Hg lamp (400- 800 nm)	absolute ethanol	6	92	58
TiO ₂ (B) /anatase mixed phase	30	air	300W Xe lamp(>420nm)	acetonitrile	7	86	19

Entry	WSe ₂	Sel. (%)	Conv. (%)	Yield (mmol)
1	×	-	-	-
2 ^a		49.02	15.24	1.04
3	\checkmark	94.81	9.63	1.28

 Table S2. The photocatalytic oxidation reaction of benzylamine into imine under solvent-free

 condition.

Reaction conditions: 3 ml of benzylamine, 30 mg catalyst, Air, 5 W white LED lamp, 60° C for 24 h, determined by GC.

^a The reaction takes place under natural light with no extra light source.

Fig. S4. H₂O₂ qualitative detection: (A) reaction solution and (B) pure benzylamine solution reacts with potassium iodide for a period of time and then uses starch as an indicator.

Fig. S5. NH₃ qualitative detection: (A) reaction solution before adding the glass rod and (B) the formation of white fumes of ammonium chloride.

Fig. S6. GC-MS of the photochemical oxidation of benzylamine for 10 hours.

Fig. S7. The XRD patterns of WSe₂ nanosheets before and after undergoing 5 recycles.

Fig. S8. The TEM images of WSe_2 nanosheets before (a) and after (b) undergoing 5 cycles.