Supplementary Information for:

Effect of substrate orientation on local magnetoelectric coupling in bi-layered multiferroic thin films

M. Naveed-Ul-Haq^{1,†}, Samira Webers^{2,*}, Harsh Trivedi^{1,*}, Soma Salamon², Heiko Wende², Muhammad Usman³, Arif Mumtaz⁴, Vladimir V. Shvartsman¹, & Doru C. Lupascu¹

¹Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany.

²Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany.

³Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

⁴Department of Physics, Quaid-i-Azam University Islamabad, Pakistan.

Polarization versus voltage loops and TEM images of BLF100 interfaces

Polarization hysteresis loops were measured for both films at room temperature at *ac* voltage frequency of 50 Hz. They are shown in Fig. S1 (a) and (b) for BLF111 and BLF100, respectively. The loops do not show a saturation behavior as it is normally expected in ferroelectric materials. Probably there is a interfacial polarization due to charge accumulated at CFO/BTO and SFO/STO interfaces, corresponding depolarization field may decrease field felt by the BTO layer (in this case CFO serves as a dielectrics with low ε). Therefore we have field not enough to switch the polarization.

Figure S1 Room temperature polarization-voltage hysteresis loops of the (a) BLF111 and (b) BLF100 thin films.

Figure S2 TEM micrographs of BLF100 at various interfaces which show imperfect interface.