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Synthesis of CT

A heterogeneous mixture of 2 M K2CO3 (5 mL), THF (6 mL), 1 (1.00 g, 1.75 mmol), 

2 (0.28 g, 0.83 mmol), and Pd(PPh3)4 (0.038 g, 4 mol%) under argon was heated at 80 

oC for 18 h. The mixture was extracted with CH2Cl2. The organic layer was dried over 

anhydrous MgSO4. Evaporation of the solvent gave a crude product, which was 

purified by silica gel column chromatography eluted with CH2Cl2/hexane (1/1) to 
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afford the desired product as a yellow solid in 70% yield. mp 100-102 °C; 1H NMR 

(400 MHz, DMSO-d6, δ): 7.45 (d, J = 8.4 Hz, 4H), 7.42 (s, 2H), 7.03 (d, J = 8.2 Hz, 

8H), 6.91 (d, J = 8.2 Hz, 8H), 6.76 (d, J = 8.4 Hz, 4H), 3.95 (t, J = 6.4 Hz, 4H,), 3.65 

(s, 2H), 1.77-1.82 (m, 4H), 1.47-1.51 (m, 4H), 1.35-1.40 (m, 8H), 0.94 (t, J = 6.8 Hz, 

6H,) ppm; 13C NMR (100 MHz, DMSO-d6, δ): 156.4, 150.8, 148.1, 144.1, 140.3, 

136.22, 127.2, 126.2, 120.0, 118.8, 117.1 115.5, 67.7, 33.8, 30.9, 28.6, 25.2, 22.0, 

13.8 ppm; HRMS (FAB) m/z [M+] calcd for C69H80O4N2S2: 1065.5166; found: 

1065.5160.

Synthesis, optical and electrochemical properties

The synthetic route of CT is illustrated in Fig. S1, and the experimental details are 

provided in the Experiments section. The CT molecule was obtained following a 

simple synthetic route. P-hexthoxytriphenylamine pinacoboronates (1) and 2,6-

dibromo-4H-cyclopenta-[2,1-b:3,4-b']dithiophene (2) were introduced by Suzuki 

coupling reaction to obtain di-substituted derivative CT in good yield. This compound 

was purified by column chromatography and characterized by 1H/13C NMR 

spectroscopy and mass spectrometry. 

Fig. S1. Synthetic route for the CT molecule.

Figure S2 presents the absorption and photoluminescence (PL) spectra of CT 

molecules in a chlorobenzene solution (ca. 1x10-5 M). The absorption spectrum of CT 
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has two prominent peaks at 303 nm and 445 nm. The emission peak of CT locates at 

509 nm. The optical band gap (E0-0) was estimated from the intersection of the 

corresponding normalized absorbance and PL spectra. The intersection wavelength of 

CT is 482 nm, which corresponds to an optical bandgap of 2.57 eV.
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Fig. S2 Absorption (black line) and emission (red line) spectra of the CT 

molecules in a chlorobenzene solution (1x10-5 M).

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analyses were 

carried out to identify the electrochemical behaviors of CT molecules. As shown in 

Figure S3, CT displays reversible multi-oxidative behavior. The HOMO energy level 

is obtained at -5.17 eV for CT, which is slightly larger than the EVBM (-5.43 eV) of 

CH3NH3PbI3, as shown in Figure S4.
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Fig. S3. Cyclic voltammograms and differential pulse voltammetry of CT 
measured at a sweep rate of 100 mV/s in THF solution. 
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Fig. S4. Energy level diagram of the hole-transporting materials used in perovskite 
solar cells. 
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Fig. S5. Schematic of perovskite solar module.

Fig. S6. Photo images of perovskite solar module with Ag electrode under a wet 
environment (26℃±2℃ and 70±5 RH%) when t =0 (before) and t = 250 hours (after) . 
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Fig. S7. The IPCE of perovskite solar cells measured from FTO side and ITO side. 
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Fig. S8. The maximum power point tracking of an ITO/MoOx/CT based perovskite 
solar module under one sun illumination. 


