Supporting Information

A 3D Conductive Network of Porous Carbon Nanoparticles Interconnected with Carbon Nanotubes as Sulfur Host for Long Cycle Life Lithium-Sulfur Batteries

Shiqiang Luo, "Weiwei Sun," Jianhuang Ke, "Yiqi Wang, "Shuangke Liu,"

Xiaobin Hong,^{*a*} Yujie Li,^{*a*} Yufang Chen,^{*a*} Wei Xie, ^{*a*,*} and Chunman Zheng ^{*a*,*}

(College of Aerospace Science and Engineering, National University of Defense Technology, Hunan Changsha 410073, China)

Fig. S1 SEM images of (a) ZIF-67 precursor and (b) Co-NC framework.

Sample	Со	С	Ν	
CNTs/Co-NC	5.62 (at%)	82.90 (at%)	11.48 (at%)	
	22.30(wt%)	66.89(wt%)	10.81(wt%)	
Co-NC	5.95(at%)	80.38 (at%)	13.68 (at%)	
	23.29(wt%)	64.00(wt%)	12.71(wt%)	
NC		85.46(at%)	14.54(at%)	
		83.34(wt%)	16.66(wt%)	

Tab. S1 The relative contents of Co, C and N (at%, wt%) in CNTs/Co-NC, Co-NC and NC composites.

Fig. S2 Raman spectrum of CNTs/Co-NC composite.

Samples	BET Surface Area /m ² g ⁻¹	Average Pore Diameter /nm	Pore (>2nm) volume $/cm^3 g^{-1}$	Micropore volume /cm ³ g ⁻¹
ZIF-67	1481.22	1.9584	0.7252	0.6902
CNTs/ZIF-67	852.50	2.3954	0.5261	0.4026
Co-NC	308.14	6.2371	0.4035	0.1034
CNTs/Co-NC	159.13	8.7726	0.9876	0.0500
S@CNTs/Co- NC	21.82	4.8736	0.2800	0.0083

Tab. S2 BET surface area, average pore diameter and pore volume dates of samples.

Fig. S3 TGA curves of S@CNTs/Co-NC, S@Co-NC, S@NC and S@CNTs.

Fig. S4 XRD patterns of S@Co-NC, S@NC and S@CNTs.

Fig. S5 Discharge/charge profiles of S@CNTs/Co-NC electrode at different cycles.

Figure S6 Typical SEM images of the cross-sections and the corresponding magnified sections of the S@CNTs/Co-NC electrode (a and b) before cycling and (c and d) after 500 cycles at 0.5 C current density.

Figure S7. Cycle performances of S@CNTs/Co-NC electrodes with different area sulfur loadings.

ould shill	ui bii uotui	es reported in re	jean				
Cathode Materials	Sulfur Content wt%	Sulfur Loading mg/cm ²	Rate	Initial Capacity (mAh/g)	Cycled Number	Decay Per Cycle	Ref.
S@CNTs/Co-NC	78.9	1.57	0.5 C	954.3	500	0.067 %	This work
	78.9	1.62	1.0 C	836.6	700	0.072 %	This work
	78.9	4.65	0.1 C	1115.3	50	0.54%	This work
S@Co-NCNT/NP	78	1.2	1.0 C	910	500	0.053 %	S1
S@Co-N-GC	70	1.24	0.2 C	1440	200	0.198 %	S2
H-S-C	57	0.80	1.0 C	832	500	0.088 %	S 3
P-CNT/S-1	67.8	Not Provided	0.2 C	1191	200	0.124 %	S4
S@CNTs/Co ₃ S ₄ -NBs	70	3.5	1.0 C	954	500	0.042 %	S 5
S-H-NCNT	79	3.52	0.5 C	979	200	0.115 %	S 6
PC/CNT	74.4	1.32	0.5 C	1123.9	200	0.193 %	S 7
HPCC-S	65	1.0	1.0 C	714	250	0.139 %	S 8
HCSs/S-LBL	65	0.9-1.1	0.6 C	850	200	0.162 %	S9
GSH@PC-S	77	Not Provided	1.0 C	914	150	0.187 %	S10

Table S3 Comparison of the electrochemical performances among this work and the other similar structures reported in recent years.

REFRENCES

- [S1] T Chen, B. R. Cheng, G. Y. Zhu, R. P, Chen, Y Hu, L. B. Ma, H. L. Lv, Y. R. Wang, J Liang, Z. X. Tie, Z Jin, and J Liu, *Nan Lett.*, 2017, 17, 437-444.
- [S2] Y. J. Li, J. M. Fan, M. S. Zheng, Q. F. Dong, *Energy Environ. Sci.*, 2016, 9, 1998-2004.
- [S3] Y Wang, X. L, J. F. Yun, P. C. Shi, P Lu, Y Sun and H. F. Xiang, *Nanoscale.*, 2018, DOI: 10.1039/c8nr06252h.
- [S4] H. Li, L. Sun and G. Wang, ACS Appl. Mater. Inter., 2016, 8, 6061-6071.
- [S5]T Chen, Z. W. Zhang, B. R. Cheng, R. P. Chen, Y Hu, L. B. Ma, G. Y. Zhu, J Liu and Z Jin, J. Am. Chem. Soc., 2017, 139, 12710-12715.
- [S6]Jun Seop Lee, Arumugam Manthiram, J. Power Sources, 2017, 343, 54-59.
- [S7] W Yang, W Yang, A. L. Song, G Sun, G. J. Shao, Nanoscale, 2018, 10, 816-824.
- [S8] C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang and Q. H. Yang, Chem. Commun., 2016, 52, 12143-12146.
- [S9] F. Wu, J. Li, Y. Su, J. Wang, W. Yang, N. Li, L. Chen, S. Chen, R. Chen and L. Bao, *Nano Lett.*, 2016, 16, 5488-5494.
- [S10] H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian and F. Wei, *Adv. Funct. Mater.*, 2014, 24, 2772-2781.