Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting information

1. Set up of MLD equipment

Figure S1. Schematics diagram of homemade MLD set up, equipped with in situ FTIR spectroscopy and hot wall viscous flow vacuum chamber.

2. Thickness characterization of transferred polyurea film using AFM

Figure S2. Two-dimensional AFM image and the height profiles (along with red line in AFM image) of the (PDI/PDA)₂₅ polyurea MLD film transferred to a-Si layer on pyrex substrate. The blue arrow indicates the polyurea film and the right is the a-Si layer. The scan area is 10 μ m × 10 μ m.

3. Surface charge density characterization from ionic conductance of nanopore

Figure S3. I-V plots for (a) polyurea nanopore (h_{eff} =8nm) and (b) SiN nanopore (h_{eff} =9nm) at 1 M KCl electrolyte with TE buffer (pH=8). The experimental conductance value were fitted with the conductance equation. The conductance of five polyurea nanopores (c) and SiN nanopores (d) were used to characterize the surface charge density at 1 M KCl. The solid line indicates the surface charge density value with 10 mC/m²s intervals. The surface charge of polyurea nanopore is in -51 ± 8 mC/m² and SiN nanopore is in -14 ± 5 mC/m².

4. 1/f noise characterization with variable mechanical stability of membrane

Figure S4. (a) TEM images of 7 nm polyurea nanopores with 25 nm thick 2µm opening membrane (Top) and 10 nm thick 0.15 µm opening membrane (Bottom) (b) Power spectral densities (PSD) for 3 kinds of 7 nm pores under 100 mV voltages in 1 M KCl electrolyte solution with TE buffer (pH 8.0), filtered at 100kHz. Each line results from fitting of the data to $S = Af^{-\beta} + B + Cf + Df^2$.

5. Lower DNA translocation frequency for polyurea nanopore compared to SiN nanopore in 1 M KCl electrolyte.

Figure S5. Ionic current traces with 2nM 1kbp dsDNA in cis-chamber for polyurea nanopore and SiN nanopore at 300 mV applied voltage, filtered at 100 kHz in 1 M KCl with TE buffer (pH 8.0).

6. Salt dependence of ionic conductance

Figure S6. I-V plots on a. polyurea nanopore (a, d=8nm, h=9nm) and b. SiN nanopore (d=8nm, h=10nm) at 0.1, 1, 10, 100, 1000, 2000 and 2500 mM KCl electrolyte with TE buffer (pH=8). The experimental conductance value were fitted with the conductance equation. (c, d) The point is experimental conductance and blue line is calculated total conductance, which is a sum of geometry term and surface charge density term. The surface charge of polyurea nanopore (c) is in -50 ± 5 mC/m² and SiN nanopore (d) is ranging from -5.2 to -13 mC/m² at 0.1mM ~ 2.5 M KCl electrolyte.

7. In-pore diffusion coefficients and drift velocities for MDM2

Figure S7. Diffusion coefficients (*D*) and drift velocities (*v*) for MDM2 transport through polyurea and SiN nanopore used in Fig. 5, obtained from fitting dwell times to 1D diffusion-drift model treating *D* and *v* as free parameters.