Supporting Information

Single Atom Detachment from Cu Clusters, Diffusion and Trapping on

CeO₂(111): Implications in Ostwald Ripening and Atomic Redispersion

Qiang Wan,¹ Fenfei Wei,¹ Yingqi Wang,² Feiteng Wang,³ Linsen Zhou,²

Sen Lin,^{1,2,*} Daiqian Xie,^{3,*} and Hua Guo^{2,*}

¹State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry,

Fuzhou University, Fuzhou 350002, China

²Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque,

New Mexico 87131, USA

³Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic

Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing

210023, China

*: corresponding authors: <u>slin@fzu.edu.cn</u>, <u>dqxie@nju.edu.cn</u> and <u>hguo@unm.edu</u>

Cluster size	E _b (Cu _n)	E _b (CO)
2	-2.02	-2.15
3	-4.31	-1.14
4	-4.48	-1.50
5	-4.38	_
6	-4.59	_
7	-4.06	-0.50
8	-4.40	-1.02
9	-5.95	-0.89
10	-6.72	-1.43
12	-7.98	-1.37
14	-4.93	-1.01
16	-6.08	-0.94
18	-5.84	-0.57
20	-5.48	-1.31

Table S1. Binding energies (eV) of Cu_n (n = 2-10, 12, 14, 16, 18, and 20) clusters on $CeO_2(111)$ and CO on $Cu_n/CeO_2(111)$.

Table S2. Detachment energies (eV) of Cu_8/CeO_2 and $CO-Cu_8/CeO_2$ calculated by DFT+*U* with *U* equal to 2 and 4.5 eV.

	Detachment Energy	
	СО	no CO
<i>U</i> =4.5 eV	0.30	0.92
U=2 eV	0.23	0.94

Table S3. Detachment energies (eV) calculated by placing Cu or Cu₁–CO at the most favorable adjacent site away from its original position in the Cu_{n-1} cluster. The

n	$E_{\rm det}$ (CO)	$E_{\rm det}$ (no CO)	E_{det} (including CO adsorption energy)
2	-0.12	0.31	-2.27
3	1.02	1.34	-0.13
4	0.38	0.81	-1.12
5	_	-0.48	-2.00
6	_	-0.30	-1.82
7	-0.70	0.23	-1.20
8	0.65	1.41	-0.37
9	-0.35	0.54	-1.24
10	0.42	0.91	-1.00
12	0.61	0.89	-0.76
14	-0.04	0.42	-1.05
16	0.72	0.78	-0.76
18	0.26	1.22	-0.31
20	0.56	0.73	-0.75

detachment energies are calculated via $E(Cu_{n-1} + Cu_1-CO/CeO_2) - E(Cu_n/CeO_2)$, $E(Cu_{n-1} + Cu_1/CeO_2) - E(Cu_n/CeO_2)$ and $E(Cu_{n-1} + Cu_1-CO/CeO_2) - E(Cu_n/CeO_2) - E(CO)$, respectively. The adsorption energy is included for Cu detachment with CO by following equation $E(Cu_{n-1} + Cu_1-CO/CeO_2) - E(Cu_n/CeO_2) - E(CO)$.

Table S4. Detachment energies (eV) for removing a single Cu atom or Cu_1 -CO complex from different configurations of the Cu_8 cluster adsorbed on ceria. A and B

A_B	$E_{ads}(cluster)$	$E_{det}(CO)$	E_{det} (no CO)	$\Delta E = E_{det}(CO) - E_{det}(no CO)$
0_1	-4.40	0.30	0.92	-0.62
1_1	2 00	-1.64	-0.69	-0.94
1_2	-3.09	-1.66	-0.70	-0.96
2_1	-4.60	0.10	0.98	-0.88
2_2		0.46	1.27	-0.81
3_1	1 67	0.01	1.18	-1.17
3_2	-4.02	0.58	1.40	-0.83
4_1	2 74	-1.43	-0.51	-0.91
4_2	-3.24	-1.29	-0.38	-0.91
5_1	4 21	0.07	0.66	-0.58
5_2	-4.21	0.22	0.72	-0.50
6_1	4 21	0.30	1.01	-0.70
6_2	-4.21	0.05	0.71	-0.66

in the notation A_B represent the configuration of Cu_8 adsorbed on ceria and the adsorption site for the CO molecule, respectively. The corresponding configurations can be seen in Figure S3.

Figure S1. Cohesive energy of Cu_n cluster, with n = 2-10, 12, 14, 16, 18, 20, 35, 55, 100 and 230 as a function of $n^{-1/3}$.¹ The total energies for the Cu_{35} , Cu_{55} , Cu_{100} , and Cu_{230} clusters were calculated using the same DFT protocol in a box of $30 \times 30 \times 30 \text{ Å}^3$. The optimized structures for Cu_{35} , Cu_{55} , Cu_{100} , and Cu_{230} are displayed in Figure S2.

Figure S2. Optimized structures of Cu_{35} , Cu_{55} , Cu_{100} , and Cu_{230} .

Figure S3. Different configurations for Cu_8/CeO_2 with CO absorbed at different sites, as discussed in Table S4.

Figure S4. Stationary point structures along the diffusion path (IS, TS and FS) for the migration of the single Cu atom from the oxygen hollow site to an adjacent oxygen hollow site and Cu₁–CO complex from the oxygen top site to an adjacent oxygen top site on $CeO_2(111)$. Color scheme: Ce, yellow; surface O, red; subsurface O, coral; Cu, bronze; C, grey.

Figure S5. Stationary point structures (IS, TS and FS) for the diffusion of the Cu atom along the step edge on $CeO_2(111)$. Color scheme: Ce, yellow; surface O, red; subsurface O, coral; Cu, bronze; C, grey.

Figure S6. CI-NEB minimal energy paths for migration of single Cu atom on $CeO_2(111)$, CO-Cu₁ complex on $CeO_2(111)$ and single Cu atom at CeO_2 step, respectively.

Computational details for ORR on Cu-CeO₂ SAC:

ORR is supposed to take place at the single Cu site following four-electron pathways as below:

$$O_2 + 4(H^+ + e^-) + * \rightarrow O_{2^*} + 4(H^+ + e^-)$$
 (1)

$$O_{2*} + 4(H^+ + e^-) \rightarrow OOH_* + 3(H^+ + e^-)$$
 (2)

$$OOH_* + 3(H^+ + e^-) \rightarrow H_2O + 2(H^+ + e^-) + O_*$$
 (3)

$$H_2O + O_* + 2(H^+ + e^-) \rightarrow H_2O + OH_* + (H^+ + e^-)$$
 (4)

$$H_2O + OH_* + (H^+ + e^-) \rightarrow 2H_2O + *$$
 (5)

The thermochemistry of these electrochemical reaction step was obtained by using DFT calculations in conjunction with SHE model developed by Nørskov and co-workers.² The free energy of O₂ was obtained from the free energy change of the reaction O₂ + 2H₂ \rightarrow 2H₂O ($G_{O2} = 2G_{H2O} - 2G_{H2} + 4.92$). The free energy of (H⁺ + e^-) in solution at standard conditions equal to that of hydrogen atom in gaseous H₂ (1/2 G_{H2}). $\Delta G = \Delta E + \Delta ZPE - T\Delta S$, which ΔZPE is the difference in zero point energies, *T* is the temperature (298.15 K), and ΔS is the change in entropy. All of the parameters have been taken from DFT calculations or standard tables for gas-phase molecules. More details can be seen in the work by Nørskov *et al.*²

Figure 7. The proposed reaction pathway for complete oxygen reduction reaction (ORR) on the CeO_2 -supported Cu SAC discussed in this work. The inset in cycle (a) shows the free energy diagram for ORR on the Cu SAC catalyst in an acidic medium.

Reference:

- 1. P. Nava et al., Phys. Chem. Chem. Phys., 2003, 5, 3372-3381.
- 2. J. K. Nørskov et al., J. Phys. Chem. B, 2004, 108, 17886-17892