Electronic Supplementary Information (ESI)

Large tunneling magnetoresistance in magnetic tunneling junctions

based on two-dimensional CrX₃ (X=Br, I) monolayers

Longfei Pan,^a Le Huang,^b Mianzeng Zhong,^a Xiang-Wei Jiang,^a Hui-Xiong Deng,^a Jingbo Li,^a Jian-Bai Xia,^a and Zhongming Wei^{*a}

a. A State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China.

b. School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China

Corresponding author: zmwei@semi.ac.cn

Supplementary Figures

Fig. S1. Schematic of a complete device with a pinning layer. The red arrows represent the possible magnetic moment direction of the CrI_3 layers. The left and right parts are Pt electrodes. h-BN monolayer is sandwiched in CrI_3 layers.

Fig. S2. Schematics of (a) $Ag-CrBr_3$; (b) $Au-CrBr_3$; (c) $Al-CrBr_3$; and (d) $Pt-CrI_3$ contacts used in our calculations.

Fig. S3. Schematic of the Brillouin zone of CrI₃-Pt contact. The red frame represents the shape of the true unit cell. The black box represents the Brillouin zone. The symmetry k-points used in the calculation are marked in the figure.