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1. Probing moiré pattern in bilayer TMDs 

2. Geometry of moire pattern in twisted bilayer MoS2 

3. Deriving cohesive law of substrate adhesion and MD simulation parameters 

4. MD simulation of buckling of twisted bilayer MoS2 
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1. Probing moiré pattern in bilayer TMDs 

 

Figure S1: schematic of constructing moiré of TMD bilayers using interfacial 
chalcogenide atoms with twist angle and mismatch. 

 



 

Figure S2: moiré patterns and representative stacking pattern, following the notation in 
Figure 1 of main text. Dashed arrows mark the orientation of the moiré (same as in 
Figure S3).  

 

To calculate structure-energy relationship, the interaction between the X atom and the X’ 
atom is described in standard 12-6 potential 

𝑉 𝑟 = 4 ∗ 𝜖(
𝑠)*

𝑟)* −
𝑠,

𝑟,)	

Where 𝜖 = 1	𝑒𝑉 	

𝑑2 = 0.339	𝑛𝑚 in the maintext is the equilibrium distance of the above potential. 



 

Figure S3: Energy, height and minimum distance distribution of the X layer. Refer to 
detailed definition in Figure 2 of main text. Dashed arrows mark the orientation of the 
moiré (same as in Figure S2).  

 

2. Geometry of moiré pattern in twisted bilayer MoS2 

Following the notation in Figure 1 of main text, the moire pattern should satisfy: 
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3. Generic modeling of substrate adhesion in MD simulation 

 

Figure S4: schematic to calculate the interaction energy between a point in the 2D layer 
and a point in the bulk substrate (atom-to-atom pair interaction energy). Represented in 
cylinder coordinates. 

The atom to atom pair energy is calculated with standard 12-6 potential 

𝑉 𝑟 = 4 ∗ 𝜖(
𝜎HI)*

𝑟)* −
𝜎HI,

𝑟, )	

For substrate, denote 𝜌K  as atom density per volume; for 2D layer, denote 𝜌K  as atom 
density per area. Thus the total energy per volume in substrate per area in 2D layer is 
calculated as 	
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The cohesive energy Φ induced by substrate is energy per unit area of 2D layer 

Φ = 2𝜋	𝜌L𝜌K 𝑑𝑧 𝑉(𝑟)𝑅𝑑𝑅
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The interaction energy per atom is 
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In MD simulation, the effect of substrate can be thus modeled using the standard 9-3 
potential with a virtual wall 

𝑉YV 𝑟 = 𝜖YV(
2	𝜎HIY

15	ℎY
−
𝜎HIV

	ℎV
)	

The buckling initiation sites in bilayer TMDs does not depend on the substrate adhesion. 
Without losing generality, in the MD simulations of bilayer MoS2, we use parameters	
𝜎HI = 3.5	𝐴𝑛𝑔,	𝜖YV = 0.2	𝐾𝑐𝑎𝑙/𝑚𝑜𝑙𝑒.  

The density of number of atoms per unit area of MoS2 (e.g., for triangular lattice, the outer 
layer of S) is  

𝜌L = 3 ∗
1
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1
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3
2
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Where 𝑙2 is equilibrium distance between points in a triangular lattice. The factor of 3 is 
caused by that in TMD, there are three layers of atoms. 

4. MD simulation of buckling of twisted bilayer MoS2 

The substrate effect is modeled using a virtual wall (see Section 3 in supporting 
information). Before deformation, energy minimization is performed. The deformations 
for X, Y and equi-biaxial is carried in a quasi-static mode. After each incremental time 
step, energy minimization is performed.  

5. MD simulation of stacking domains in bilayer MoS2 

The substrate effect is modeled using a virtual wall (see Section 3 in supporting 
information). The simulation cell of each stacking domain is shown in Figure 5 of main 
text. Before deformation, energy minimization is performed. Then the out-of-plane 
displacement is disabled, only allowing in-plane relaxation. The further equi-biaxial 
deformations is carried in a quasi-static mode. After each incremental time step, energy 
minimization is performed.  

 

 

 

 

 

 

 



6. Continuum mechanics model to predict the wrinkling morphology  

 

Figure S5: Schematic of characterizing the geometry (Amplitude A, half periodicity L, 
and separation distance to the substrate)  

As already discussed in main text, due to the decoupled nature of the deformation of 
bilayer, we can model just one layer (Figure S5). The wrinkled shape have half 
periodicity 𝐿/2, amplitude 𝐴, asymptotic separation distance to substrate 𝑑bKB. 

 

Figure S6: Schematic of deriving the normal strain in the wrinkled monolayer.  

 

By symmetry, consider the left half of the wrinkled layer (Figure S6). Required by force 
equilibrium, the normal strain in the layer	𝑁 𝑥  is 

𝑁 𝑥 = 𝑁(0)𝑐𝑜𝑠𝜃e + 𝑞 𝑥
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Where 𝑞 𝑥  is the vdW force exerted from the substrate (positive sign if pointing 
upward).  

Denote the profile as 𝑦 𝑥 , then we obtain 
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Denote 𝐸𝑡 as the in-plane stiffness of the layer, then the normal strain can be expressed 
as  

𝜖 𝑥 = 𝜖2
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The solution of 𝑦 𝑥  can be obtained by minimize the total energy 𝑈pbpqr = 𝑈sHEtuEL +
𝑈vbBKwHggubE + 𝑈qtTHgubE.  

The bending energy can be expressed as  

𝑈sHEtuEL =
𝐷
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Where 𝑘(𝑥) is the curvature of 𝑦 𝑥 . 

The normal strain energy can be expressed as  

𝑈vbBKwHggubE =
1
2𝐸𝑡	 𝜖 𝑥 *𝑑𝑠
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The adhesion energy can be expressed as  

𝑈qtTHgubE = 𝑉YV 𝑦(𝑥) ∗ 𝜌′L𝑑𝑠
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Where  

𝜌′L = 𝜌L
1

1 + 𝜖 𝑥  



 to account for the change of atom density per area in the layer. The expression for 𝑉YV 𝑟  
is described in Section 3 of supporting information. 𝑑bKB is the separation distance of 
minimim  𝑉YV 𝑟 . 

 

Figure S6: Schematic of deriving the normal strain in the wrinkled monolayer.  

To obtain a simplified solution, we assume the shape as a piecewise function with two 
Gaussians (Figure S6).  

𝑦 𝑥 =
𝑑 + 𝐴	𝑒S

eC
*	{C, −𝑥2 ≤ 𝑥 ≤ 0

𝑑bKB − 𝑑bKB − 𝑦 −𝑥2 𝑒
S eDe~ C

*	{CC , −
𝐿
2 ≤ 𝑥 ≤ −𝑥2

 

We further drop the vdW term in calculating the normal strain 𝜖 𝑥  

𝜖 𝑥 ≅ 𝜖2
1

1 + 𝑦j 𝑥 *
 

𝜖qKK denote the globally applied strain to the undeformed layer. The original length of the 
sheet before buckling is  

𝐿2 =
𝐿

1 + 𝜖qKK
 

After deformation, the contour length of the layer is 

𝐿vbEpb�w = 2 𝑑𝑠
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We take an estimated assumption for simplicity  

𝜖2 =
𝐿vbEpb�w − 𝐿2

𝐿2
 

The total energy is then a five-variable function as 𝑈pbpqr(𝐴, 𝜎, 𝑥2, 𝜎*, 𝑑), for every set of 
geometrical, mechanical, and material constants 𝐿(feature spacing), 𝜖qKK (applied 
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compression), 𝜖YV(substrate adhesion), 𝐸𝑡(in-plane stiffness). Minimize 𝑈pbpqr gives the 
five variables that determines the spatial profile of the wrinkle.  

The amplitude 𝐴 is well-defined. The delamination length is reported as 2𝜎. 

7. DFT calculation 

Due to limited model size that DFT calculations can handle, we use a unit cell described in 
Figure S7. We first use the same MD simulation setup (e.g., substrate, deformation) as 
described in Section 5. We then take the structure snapshot at several deformations from 
MD simulation as input for DFT calculation. Slab model is used to ensure enough vacuum 
space in the out-of-plane direction.  
The generalized gradient approximation (GGA) in the framework of Perdew-Burke-
Ernzerhof (PBE) is adopted for the exchange-correlation potential. Numerical atomic 
orbitals with double zeta plus polarization are used for the basis set, with a plane-wave 
energy cutoff of 500 Ry. Geometric structures are relaxed until the force on each atom is 
less than 0.01 eV A˚-1 and the convergence criteria for energy is 10-5 eV. Monkhorst-Pack 
k-points is 2x9x1. For optical absorption calculation (the imaginary part of dielectric 
function), five times denser K-points were used and self-consistent field tolerance is 10-6. 
The electronic smearing temperature during all calculations is 300 K. 

	

	

Figure S7: Schematic of unit cell of monolayer MoS2 for DFT calculation.  

	

 

	

 


