Supporting Information

Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline

Miao Chen,^a Haifeng Wang,^a Yuye Zhao,^a Wei Luo,^a Li Li,^a Zhenfeng Bian,* ^b Lianjun Wang,^a Wan Jiang,^{a, c} and Jianping Yang*^a

[†] State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
[‡] Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R.

China.

[§] School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, P. R. China

E-mail: bianzhenfeng@shnu.edu.cn (Z. Bian), jianpingyang@dhu.edu.cn (J. Yang)

Fig. S1 SEM images of the prepared catalysts with different PdCu alloy loading amount: (a) N-pC: without metal salts; (b) $Pd_{0.4}Cu_{0.4}@N-pC$: 0.4 wt% $PdCl_4^{2+} + 0.4$ wt% Cu^{2+} ; (c) $Pd_{0.6}Cu_{0.2}@N-pC$: 0.6 wt% $PdCl_4^{2+} + 0.2$ wt% Cu^{2+} ; (d) $Pd_{0.2}Cu_{0.6}@N-pC$: 0.2 wt% $PdCl_4^{2+} + 0.6$ wt% Cu^{2+} ; (e) $Pd_6Cu_2@N-pC$: 6 wt% $PdCl_4^{2+} + 2$ wt% Cu^{2+} ; (f) $Pd_2Cu_6@N-pC$: 2 wt% $PdCl_4^{2+} + 6$ wt% Cu^{2+} .

Fig. S2 TEM image of catalyst $Pd_{0.4}Cu_{0.4}@pC$ without adding melamine: 4 wt% $PdCl_4^{2+} + 4$ wt% Cu^{2+} . The preparation process is the same as $Pd_4Cu_4@N-pC$, except that no melamine is added.

Fig. S3 Pd 3d XPS spectra and (c) Cu 2p XPS spectra of Pd₄Cu₄@N-pC.

Fig. S4 (a) XRD patterns, (b) nitrogen sorption isotherms, (c) pore size distribution curves of $Pd_{0.4}Cu_{0.4}@N-pC$, $Pd_{0.6}Cu_{0.2}@N-pC$, and $Pd_{0.2}Cu_{0.6}@N-pC$.

Fig. S5 LSV patterns of Pd₄Cu₄@N-pC 、 Pd₆Cu₂@N-pC. Pd₂Cu₆@N-pC.

Fig. S6 Standard curve for NO_3^- to calculate the concentration of electrolyte after electrocatalysis.

Fig. S7 The results including nitrate conversion, removal capacity and selectivity for nitrogen of nitrate reduction of (a) $Pd_4Cu_4@N-pC$, $Pd_6Cu_2@N-pC$, and $Pd_2Cu_6@N-pC$, and (b) $Pd_{0.4}Cu_{0.4}@N-pC$, $Pd_{0.6}Cu_{0.2}@N-pC$, and $Pd_{0.2}Cu_{0.6}@N-pC$; the detail investigation the nitrate electro-catalysis ability of $Pd_4Cu_4@N-pC$ coralline-like nanostructures (c) at different calcination temperatures of 500 °C, 600 °C, and 700 °C, and (d) under different reduction voltage of -1.0 V, -1.1 V, -1.2 V, -1.3 V and -1.4 V. All composites were reduced after 12 h at -1.3 V.

Fig. S8 Thermal gravimetric analysis (TGA) curves of (a) $Pd_4Cu_4@N-pC$ and (b) $Pd_{0.4}Cu_{0.4}@N-pC$, respectively.

Fig. S9 XRD patterns of $Pd_4Cu_4@N-pC$ coralline nanostructures obtained at different calcination temperatures of 500 °C, 600 °C, and 700 °C.

Fig. S10 Testing the respective solutions of NO_2^- and NH_4^+ from electrocatalytic corresponding points from 6 h to 48 h.

Sample	Pore diameter ^[a] (nm)	Pore volume ^[b] (cm ³ g ⁻¹)	S _{BET} ^[c] (m ² g ⁻¹)	S _{micro} ^[d] (m ² g ⁻¹)
N-pC	1.97	0.26	524.1	440.1
Pd ₄ Cu ₄ @N-pC	2.28	0.25	444.8	368.3
Pd ₆ Cu ₂ @N-pC	2.6	0.21	470.6	372.7
Pd ₂ Cu ₆ @N-pC	2.99	0.19	455.2	338.1
Pd _{0.4} Cu _{0.4} @N-pC	3.02	0.17	318.8	241.4
Pd _{0.6} Cu _{0.2} @N-pC	2.25	0.18	323.9	256
Pd _{0.2} Cu _{0.6} @N-pC	2.63	0.21	323.6	248.5

Table S1: Physicochemical properties of Pd_xCu_y@N-pC coralline nanostructures.

[a] Pore diameter were obtained by using Barrett-Joyner- Halenda (BJH) model from the adsorption branches of isotherms.

^[b] Pore volume were evaluated at a relative pressure P/P_0 of 0.995. ^[c] BET surface areas, S_{BET}, were determined by common Brunauer-Emmett-Teller (BET) method.

^[d] T-plot micropore surface.

Table S2. Leaching atc	omic concentration	$of Pd_4Cu_4@1$	N-pC electro	de for electro-
catalysis test at the resp	pective electrocatal	lytic time poir	nts.	

Reaction time (h)	Cu concentration (ppb)	Pd concentration (ppb)
6	0.15	0.03
12	0.15	0.03
18	0.07	0.02
24	0.08	0.03
36	0.05	0.01
48	0.06	0.02