Photoelectrochemical Properties of MOF Induced Surface Modified TiO_2 Photoelectrode

Wei Jiao,^{a, b} Jiaxing Zhu,^a Yun Ling,^a Mingli Deng,^a Yaming Zhou*^a and Pingyun Feng*^b

- a. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
- b. Department of Chemistry, University of California, Riverside, CA 92521, USA

Correspondence to Pingyun Feng email: pyfeng@ucr.edu or Yaming Zhou email: ymzhou@fudan.edu.cn

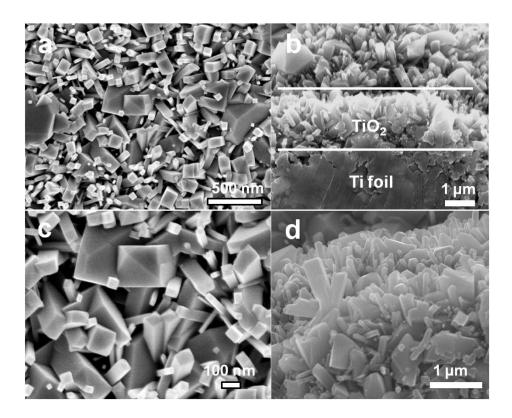


Fig. S1 Top (a, c) and cross-sectional (b, d) view for SEM images of the pristine TiO_2 electrode.

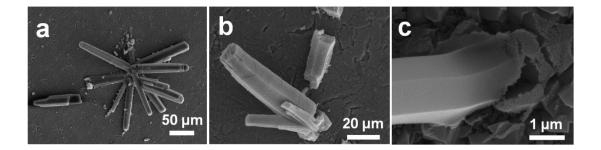
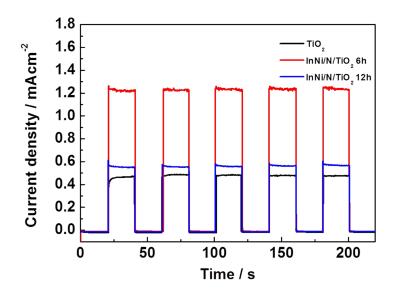



Fig. S2 SEM images of the $InNi/N/TiO_2$ electrode with 12 h synthesis time (a) before and (b, c) after heat treatment at 600 °C.

Fig. S3 Transient photocurrents of pristine TiO_2 and $InNi/N/TiO_2$ photoelectrodes with different synthesis time at 0.6 V vs SCE under simulated sunlight illumination.

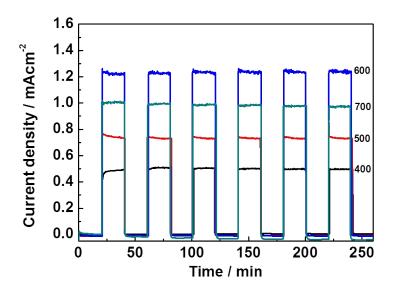


Fig. S4 Transient photocurrents of $InNi/N/TiO_2$ annealed with different temperatures at 0.6 V vs SCE under simulated sunlight illumination.