ELECTRONIC SUPPLEMENTARY INFORMATION

Ambipolar Remote Graphene Doping by a Low Energy Electron Beam

Veronika Stará, ^{a,b} Pavel Procházka, ^{a,b} David Mareček, ^b Tomáš Šikola ^{a,b} and Jan Čechal * ^{a,b}

^a CEITEC - Central European Institute of Technology, Brno University of Technology,

Purkyňova 123, 612 00 Brno, Czech Republic

^b Institute of Physical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.

*E-mail: <u>cechal@fme.vutbr.cz</u>

CONTENTS:

1. Sample description

1. Sample description

The graphene field effect transistor device employed for the study is portrayed in Figure S1 and an optical image of the contacted graphene is shown in Figure S2.

Double-Sided Copper Tape Graphene Conductive Silver Paint

Figure S1: Photograph of the fabricated graphene field effect transistor device. Graphene transferred on SiO_2 with three pairs of pre-fabricated gold contacts (detailed in Figure S2) was placed onto a chip expander using a conductive double sided copper tape. Note that only one of three pre-fabricated pairs of contacts is overlaid with graphene and used. Conductive connection between the connector contacts and graphene contacts is realized by silver paint; connections for source and drain are isolated from the gate by capton tape. The expander has female connectors for a dismountable and reliable connection with an UHV sample holder.

Figure S2: Optical image of the graphene placed over the gold contacts. A continuous good quality graphene layer completely overlays both contacts.