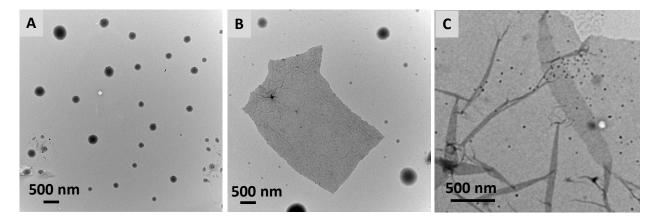
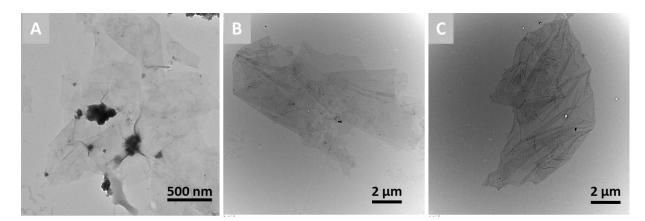
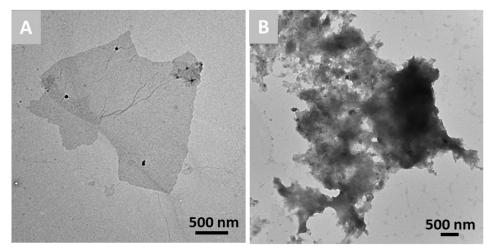

Peroxidase mimicking DNAZymes degrade graphene oxide

Rajendra Kurapati, Alberto Bianco*

University of Strasbourg, CNRS, Immunology, Immunopathology and therapeutic chemistry, UPR 3572, 67000 Strasbourg, France


Electronic Supplementary Information


Figure S1. UV-vis absorption spectra of the PS2.M-hemin $1 \times \text{complex}(A)$ and $3 \times \text{complex}(B)$, compared to PS2.M alone, GO alone, and the complexes in the presence of GO. The spectrum of GO alone is also shown.


Figure S2: Peroxidase activity test using ABTS²⁻. ABTS²⁻ is oxidized to ABTS⁺ radical cation (greenish color) by PS2.M-hemin 1× complex and 3× complex, in the presence of hydrogen peroxide. The peroxidase activity test was carried out in the presence of 10 μ g GO in both complexes.

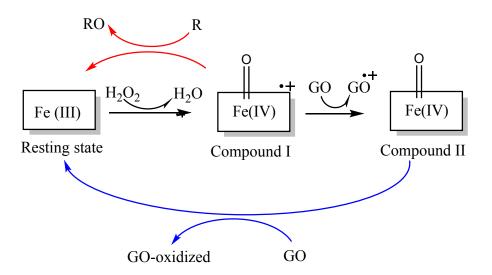

Figure S3. TEM images: (A) PS2.M-hemin 1× complex at day 0; (B) PS2.M-hemin 3× complex + GO at day 0; (C) Magnified image of (Figure 1B) PS2.M-hemin 3× complex + GO at day 0.

Figure S4. TEM images of control experiments using $1 \times \text{complex}$. (A) $1 \times \text{complex} + \text{GO}$ without H_2O_2 for 30 days; (B) Hemin + GO without H_2O_2 for 30 days; and (C) GO + H_2O_2 for 30 days.

Figure S5. TEM images of control experiments using $3 \times \text{ complex.}$ (A) $3 \times \text{ complex} + \text{GO}$ without H_2O_2 for 30 days; and B) Hemin + GO + H_2O_2 for 30 days.

Figure S6. Two-electron oxidation mechanism catalyzed by hemin enzymes as reported earlier¹. Red-arrows describe one-step or direct oxygen transfer oxidation mechanism.

References

1. Poon, L. C. H., Methot, S. P., Morabi-Pazooki, W., Pio, F., Bennet, A. J. & Sen, D. Guaninerich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. *J. Am. Chem. Soc.* **2011**, *133*, 1877-1884.