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Figure S1. Calculated extinction spectra of a single Ag nanosphere (a) and nano-hemisphere (b) on Si 

substrate in UV-visible range. Discrete dipole approximation (DDA) method was used for the 

calculation of extinction spectra. 
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Figure S2. Calculated absorption spectra of the sDAMNPs on Si substrate (a) and 1D periodic Ag metal 

strip arrays. RCWA was used the calculation of absorption spectra. 

 

 

 

 

Figure S3. Scattering intensity of UV-visible light from the sDAMNPs with different inter-distances 

(gap denoted by d) among the Ag NPs. 
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Figure S4. (a) Plane view SEM images of Ag NPs formed by Ag thin micro strips with different initial 

thicknesses (10 nm < h < 30 nm). (b) Average Ag NPs size (i.e., average radius R) as a function of h, 

(c) propagation (transmission) distance of NIR guided by sDCW at the wavelength of 1367 nm as a 

function of h, and (d) average transmission distance of NIR guided by sDCW in the range of 1200-1600 

nm as a function of h. 
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2D self-consistent scattering field (2D SCSF) calculation 

Each of the Ag NPs was assumed to a simple dipole with isotropic polarizability ( )α ω   at radial 

frequency ω . The total E-field in the system can be expressed as 
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which describes the propagation of E-field from the position of the i th particle ( ir ) to the point of 

observation ( r ). ( ),ωincE r  is the incident E-field, which was modeled as a Gaussian beam 
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0exp / expinc effE z y w i k n x tω= − + −r , where w  is the beam waist, 0k  is the wavenumber of 

the incident E-field in vacuum, and effn  is the effective refractive index for the system. ( )ωiα  is the 

isotropic polarizability of the i th particle which can be written as 
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i iα I α  . In the expression of ( )ωiα , ( )dε ω  is 

the dielectric constant of the dispersion medium,    x y z 
 

  is the unit vector of the Cartesian coordinate, 

and I   is a 3×3 unit matrix. The non-perturbed polarizability ( ) ( )0 ωiα  of the i th particle can be 

written as ( ) ( ) ( )
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iα U  with the unit tensor U , the radius of the i th particle jR , 

and the dielectric constant ( ),p iε ω   of the i th particle. In this relationship, ( ),ωiE r   is the self-

consistent E-field at ir . The set of linear equations on ( ),ωiE r  can be numerically solved to calculate 

the E-field at designated coordinates. 

  


