SUPPLEMENTARY INFORMATION

Single and Polycrystalline CeO₂ Nanorods as Oxygen–Electrode Materials for Lithium–Oxygen Batteries

Myeong-Chang Sung, ‡ Gwang-Hee Lee, ‡ and Dong-Wan Kim*

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713, Korea

‡ These authors contributed equally to this article.

* Tel: +82-2-3290-4863, E-mail: dwkim1@korea.ac.kr (D.-W. Kim)

Fig. S1 TEM image of (a, b) CeO_2 NPs at the beginning of the reaction (0h), (c, d) PC-CeO₂ NRs at the reaction time of 0.5h, and (e, f) SC-CeO₂ NRs at the reaction time of 1h.

Fig. S2 (a) XRD patterns of CeO₂ NPs (t = 0h), PC-CeO₂ NRs (t = 0.5h) and SC-CeO₂ NRs (t = 1h). (b) Magnified XRD patterns of red rectangle in (a).

	Intensity (311)	Intensity (222)	I ₍₃₁₁₎ / I ₍₂₂₂₎
0h	58.4	22.3	2.6
0.5h	142.0	46.3	3.1
1h	174.0	46.3	3.8

Table S1. The degree of preferential orientation for CeO₂ materials from the XRD patterns.

Fig. S3 N₂ adsorption-desorption curves for (a) PC-CeO₂ and (b) SC-CeO₂ NRs.

Fig. S4 (a) 1^{st} discharge-charge curve of SC-CeO₂ NR at a current rate of 500 mA g⁻¹. (b-e) Li 1s XPS spectra of SC-CeO₂ NR at different stages in the 1^{st} cycle, corresponding to stage I -IV in (a), respectively.

Fig. S5 FESEM images of (a) discharged and (b) charged SC-CeO₂ NR electrodes.

Fig. S6 (a) 50^{th} cycle discharge–charge curves of SC-CeO₂ NR at a current rate of 500 mA g⁻¹ and (b) CV curve for SC-CeO₂ NR at 3^{rd} cycle.

Electrode	Cycle	RC equivalent circuit model	R_e (Ω mg ⁻¹)	R_i (Ω mg ⁻¹)	R_{ct} (Ω mg ⁻¹)
	OCV		47.2	-	3666.9
PC-CeO ₂ NRs -	Charge	Re Ri W	37.0	3450.4	61347.0
SC-CeO ₂ NRs	OCV	Re Ret W CPE1	37.0	-	2132.1
	Charge	− R ₀ R ₁ R _{ct} W CPE1 CPE2 W ₀	34.6	704.0	16461.9

Table S2 RC equivalent circuit model and fitting values of PC-CeO₂ NR and SC-CeO₂ NR electrodes.

Reference	Material	Current rate	Voltage gap @500 mA h g ⁻¹ (V)	1st discharge capacity (mA h g-1)
Our work	SC-CeO ₂ NRs	500 (mA g ⁻¹), 0.16 (mA cm ⁻²)	1.53	16300
[20]	NP-CeO ₂	0.05 (mA cm ⁻²)	-	2128
[31]	$Ce_{0.8}Zr_{0.2}O_2$	80 (mA g ⁻¹)	-	1620
[32]	$LaFe_{0.5}Mn_{0.5}O_3\text{-}CeO_2$	100 (mA g ⁻¹)	-	4700
[33]	GNS/ZDC	0.2 (mA cm ⁻²)	1.77	3254
[34]	CeO_2/δ -MnO ₂	200 (mA g ⁻¹)	1.42	8260
[35]	CeO ₂ @RGO	400 (mA g ⁻¹),	1.02 (1000 mA g ⁻¹)	11900
[36]	Ag@CeO ₂	100 (mA g ⁻¹)	-	3415
[37]	ZDC/carbon	0.2 (mA cm ⁻²)	1.65	8435
[38]	CeO ₂ /CNT	20 (mA g ⁻¹)	-	2000

Table S3 Comparison of the present work with CeO_2 electrocatalysts for LOBs.