Supporting Information

Flap endonuclease-initiated enzymatic repairing amplification for ultrasensitive detection of target nucleic acids

Hyowon Jang^{#a}, Chang Yeol Lee^{#a}, Seoyoung Lee^a, Ki Soo Park^{b*} and Hyun Gyu Park^{a*}

^a Department of Chemical and Biomolecular Engineering (BK 21+ program),

KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 305-701, Republic of Korea

^b Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.

#These authors equally contributed to this work.

* To whom correspondence should be addressed.

E-mail: hgpark@kaist.ac.kr (H.G. Park); Phone: +82-42-350-3932; Fax: +82-42-350-3910. E-mail: kskonkuk@gmail.com (K.S. Park); Phone: +82-2-450-3742; Fax: +82-2-450-3742

Strand name	DNA sequence $(5' \rightarrow 3')^{(a)}$			
Target specific-primer ^(b)	GTC TGA CGG TTC TTA AGC T C			
FERA primer ^(c)	AAA ACA CAG ACA GGA AAA GAA G GGG AGA AAG AAA TGG			
	TAG CAA CA-phosphate			
FERA template	CCT TCT TTT CCT GTC TGT GTA CTC CTC GGC GCT A CC TTC			
	TTT TCC TGT CTG TGT TTT A TA GTC TGT TTC TGT GGT GT			
FERA invasive probe	ACA CCA CAG AAA CAG ACT ACC CGT CTC GGT TTT CCG AGA			
	CGG GTT CCT CGG CGC T			
Target DNA	CAA CAA GCT ACC ATT TCT TTC TCC $C^{(d)AG}$ CTT AAG AAC CGT			
	CAG ACA GAA AA			
T1	CAA CAA GCT ACC ATT TCT TTC TCC T ^(d) AG CTT AAG AAC CGT			
	CAG ACA GAA AA			
Т2	CAA CAA GCT ACC ATT TCT TTC TCC $G^{(d)}AG$ CTT AAG AAC CGT			
	CAG ACA GAA AA			
Т3	CAA CAA GCT ACC ATT TCT TTC TCC A ^(d) AG CTT AAG AAC CGT			
	CAG ACA GAA AA			
Asymmetric PCR forward primer for				
CT plasmid DNA	AGA GAA CGT GCG GGC G			
Asymmetric PCR reverse primer for	TTA GTC AGA TTT GTT TCC AAC AAG CTA			
CT plasmid DNA				

Table S1 DNA sequences employed in this work.

- (a) The colors of oligonucleotide sequences correspond to those of the domains depicted in Figure 1.
- (b) The target-specific primer is designed to be complementary to the target nucleic acids (black) except for one base at 3'-end (red) that is overlapped with one base of the FERA primer to form the junction of the single- and double-stranded DNA that can be cleaved by FEN.
- (c) The FERA primer is designed to contain trigger 1 (green) and the sequence complementary to the target nucleic acids (black) with the 3'-phosphopate group (red).
- (d)The underlined bases in T1, T2, and T3 indicate the mismatched site that is different from target DNA.

Table S2 Comparison of this method with other isothermal amplification methods.

Key method	Signaling	Assay time	Detection	Limitations	Reference
		(min)	limit		
Self-primed isothermal amplification	Electrochemi stry	90	0.1 pM	-Labeling with thiol -Requirement of nicking enzyme recognition site in target nucleic acid	1
Hybridization chain reaction coupled with SiO ₂ @MoSe ₂ ªand GO-AuNPs ^b	Electrochemi stry	265	0.068 fM	-Long reaction time -Modification of electrode	2
SDA ^c and hairpin self-assembly	Electrochemi stry	160	1.6 fM	 Labeling with electrochemical active molecule Modification of electrode 	3
EXPAR-assisted AuNP ^d amplification	Colorimetry	60	46 fM	Poor stability of AuNPs ^d in enzymatic reaction buffers	4
Catalytic hairpin assembly coupled with enzymatic repairing amplification	Fluorescence	120	50 fM	Labeling with fluorophore and quencher	5
Cyclic enzymatic repairing amplification FERA	Fluorescence Fluorescence	130 90	0.1 fM 15.16 aM	Labeling with fluorophore and quencher -	6 This study

^a SiO₂@MoSe₂: silicon dioxide/molybdenum selenide

^b GO-AuNPs: graphene oxide-gold nanoparticles

^cSDA: strand displacement amplification

^d AuNPs: gold nanoparticles.

Fig. S1 The flowchart that shows the step-by-step procedures of the FERA assay.

(A) Generation of multiple trigger 1 (B') (A.1) Hybridization of two primers with target DNA (A.2) Flap endonuclease-catalyzed cleavage at the junction of the single- and double-stranded DNA (A.3) The intact FERA primer replaces the cleaved FERA primer and repeats (A.2) (B) Trigger 1 (B')-initiated FERA (B.1) Extension reaction from 3'-OH of trigger 1 and incorporation of two uracil bases on the opposite strand of FERA template (B.2) Cleavage by repairing enzymes (UDG and Endo IV) → generation of trigger 1 (B') and 2 (C') (B.3) The extension reaction is resumed at 3'-OH of each trigger → a large amount of the trigger 1 (B') and 2 (C') (C) Trigger 2 (C')-initiated FERA (C.1) Hybridization of trigger 2 (C') with FERA invasive probe, generating the junction of the single- and double-stranded DNA (C.2) Flap endonuclease-catalyzed cleavage → generation of trigger 3 (A') (D) Trigger 3 (A')-initiated FERA

(D.1) Extension reaction from 3'-OH of trigger 3 (A') in the same manner with (step B) (D.2) Repeated extension and repairing enzyme-induced cleavage reactions \rightarrow a large amount of trigger 1 (B') and 2 (C')

Fig. S2 Time-dependent fluorescence intensities during the FERA reaction to find the optimal 3'-end structure of the FERA primer (FERA primers without (A) and with (B) the phosphate group at 3'-end). The concentrations of target specific-primer, FERA primer, template, invasive probe, and target DNA are 5 nM, 5 nM, 50 nM, 500 pM, and 1 nM, respectively.

Fig. S3 Time-dependent fluorescence intensities during the FERA reaction to find the optimal reaction temperature. (A: 40 °C, B: 42.5 °C, C: 45 °C, D: 47.5 °C, E: 50 °C). The concentrations of target specific-primer, FERA primer, template, invasive probe, and target DNA are 5 nM, 5 nM, 50 nM, 500 pM, and 1 nM, respectively.

Fig. S4 Time-dependent fluorescence intensities during the FERA reaction to find the optimal concentration of FERA template (A: 250 nM, B: 100 nM, C: 50 nM, D: 10 nM, E: 5 nM). The concentrations of target specific-primer, FERA primer, invasive probe, and target DNA are 5 nM, 5 nM, 500 pM, and 1 nM, respectively.

Fig. S5 Time-dependent fluorescence intensities during the FERA reaction to find the optimal concentration of FERA primer (A: 50 nM, B: 25 nM, C: 5 nM, D: 2.5 nM, E: 1 nM). The concentrations of target specific-primer, FERA template, invasive probe, and target DNA are 5 nM, 50 nM, 500 pM, and 1 nM, respectively.

Fig. S6 Time-dependent fluorescence intensities during the FERA reaction to find the optimal concentration of FERA invasive probe (A: 10 nM, B: 5 nM, C: 1 nM, D: 500 pM, E: 100 pM). The concentrations of target specific-primer, FERA primer, template, and target DNA are 5 nM, 5 nM, 50 nM, and 1 nM, respectively.

Fig. S7 The correlation of threshold time to logarithm of the concentration of asymmetric PCR products spiked in diluted human serum (1%). Threshold time was defined as the reaction time when the fluorescence intensity is over 3,400. The concentrations of target specific-primer, FERA primer, template, and invasive probe are 5 nM, 5 nM, 50 nM, and 500 pM, respectively. Error bars were obtained from the three repeated experiments.

References

- 1. W. Lu, Q. Yuan, Z. Yang and B. Yao, *Biosens. Bioelectron.*, 2017, **90**, 258-263.
- 2. H. L. Shuai, X. Wu, K. J. Huang and Z. B. Zhai, *Biosens. Bioelectron.*, 2017, **94**, 616-625.
- 3. J. Li, Z. Chen, Y. Xiang, L. Zhou, T. Wang, Z. Zhang, K. Sun, D. Yin, Y. Li and G. Xie, *Biosens. Bioelectron.*, 2016, **86**, 75-82.
- 4. R. D. Li, B. C. Yin and B. C. Ye, *Biosens. Bioelectron.*, 2016, **86**, 1011-1016.
- C. H. Zhang, Y. Tang, Y. Y. Sheng, H. Wang, Z. Wu and J. H. Jiang, *Chem. Commun.*, 2016, 52, 13584-13587.
- 6. D. M. Zhou, W. F. Du, Q. Xi, J. Ge and J. H. Jiang, *Anal. Chem.*, 2014, **86**, 6763-6767.