Supporting Information

Surface Conversion of ZnO Nanorod to ZIF-8 to Suppress Surface Defects for Visible-Blind UV photodetector

Hyeonghun Kim^a, Woochul Kim^a, Jiyoon Park^a, Namsoo Lim^a, Ryeri Lee^a, Sung Jun

Cho^a, Yogeenth Kumaresan^a, Myoung-kyu Oh^{*b}, Gun Young Jung^{*a}

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST),

123 Chemdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

^b Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.

^{*}Address correspondence to omkyu@gist.ac.kr, gyjung@gist.ac.kr.

Fig. S1 (a) A TEM image, (b) HR-TEM image, and (c) SAED pattern of the ZnO NR.

	-					Elei	ment		at%	
						С	K		35.01	
						N	K		12.82	
						0	K		23.71	
. 6						Zı	n L		28.46	
0				Component		Zn at%		wt%*		
N				ZIF-8		3.21		26.2		
				ZnO		25	.25		73.8	
		-								
0	1	2	3	4	5	6	7	8	9	10
Full Sca	ale 2286	octs Curs	sor: 0.0	00						keV

* wt% of ZIF-8 = 100 (%) × 227.58 / (227.58 + 7.87 × 81.38) = 26.2 wt%, wt% of ZnO = 100 - wt% of ZIF-8 = 73.8 wt%

Fig. S2 SEM-EDX spectrum of the 50-ZnO@ZIF-8 NRs.

Fig. S3 (a) Narrow N1s XPS spectrum of the ZnO@ZIF-8 NRs.

Fig. S4 (a) K-M function spectrum of the bare ZIF-8 film and (b) its corresponding Tauc plot.

Growth of ZIF-8 film on Si substrate

An n⁺ Si substrate was cleaned with acetone, isopropyl alcohol and DI in sequence and subjected to UV-ozone treatment. The substrate was dipped into a 50 ml of methanolic solution containing 12.5 mM of $Zn(NO_3)_2 \cdot 6H_2O$ and 25 mM of Hmim for 30 min. After completing the reaction, the sample was washed with methanol and blow-dried with a nitrogen gun. This process was repeated 7 times to have 600 nm-thick ZIF-8 film. The sample was annealed at 200 °C for 1 hr under air atmosphere to vaporize the methanol captured within the micropores of ZIF-8 film.

Fig. S5 (a) UV-Visible reflectance spectrum of 30 nm-thick Au (30 nm) on a Si substrate.

Fig S6 SEM images of the top Au electrode deposited on the (a) ZnO NRs and (b) PMMA-ZnO NRs. I-V curves (inset: log scale) of the (c) ZnO NRs and (d) PMMA-ZnO NRs PDs in dark and under illumination of 365 nm (irradiance of 1 mWcm⁻²).

Fig. S7 SEM images of the top electrode deposited on the (a) 5-ZnO@ZIF-8 NRs and (b) 20-ZnO@ZIF-8 NRs

Fig. S8 Reliability test; photoresponses of three different ZnO@ZIF-8 NRs PDs under an irradiance of 0.5 mW cm⁻².

Fig. S9 Stability test; photoresponse of the fresh ZnO@ZIF-8 NRs PD and after 4 months storage in air under repeated illumination cycles (irradiance of 0.5 mW cm⁻², 20 sec on and 30 sec off).

Fig. S10 (a) PL spectra of the ZnO NRs and ZnO@ZIF-8 NRs with and without 0.5 nm-thick Au film under 325 nm laser exposure. (b) UV-Visible reflectance spectra of a Si wafer with and without the 0.5 nm-thick Au film.

Photodetector	Synthesis	Device structures	UV source (nm)	Rise/Decay times (s)	Responsivity (A W ⁻¹)	Ref.	
ZnO film	Sol-gel	Parallel	350	69/120	0.028	S 1	
BiOCl/ZnO	Sol-gel	Parallel	350	26/11.2	0.18	S 1	
Ultra-porous ZnO film	Flame spray pyrolysis	Parallel	370	250/150	13	48	
ZnO nanorod	Hydrothermal	Parallel	365	100/120	-	S2	
ZnO nanorod	Hydrothermal	Parallel	370	-	86	S3	
ZnO nanofiber	Electospinning	Parallel	360	31/30	-	S4	
Ag-doped ZnO nanofiber	Electospinning	Parallel	360	6.6/3.0	-	S4	
ZnO nanorod	Hydrothermal	Vertical	365	4/230	4800	19	
ZnO nanorod/p-si	Hydrothermal	Vertical	370	0.022/0.033	0.6	S5	
7n0@7IF-8			365		105		
nanorods	Hydrothermal	Vertical	295	1.4/1.6	291	This work	

Table S1 Previously reported ZnO based-UV photodetectors and their PD performances

References

S1. F. Teng, W. Ouyang, Y. Li, L. Zheng and X. Fang, Small, 2017, 13, 1700156.

S2. I.-C. Yao, T.-Y. Tseng and P. Lin, Sens. Actuators, A, 2012, 178, 26-31.

- S3. T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao and S. L. Wu, *IEEE Trans. Electron Devices*, 2013, 60, 229-234.
- S4. Y. Ning, Z. Zhang, F. Teng and X. Fang, Small, 2018, 14, 1703754.
- S5. N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, R. Shamsudin and N. K. Othman, Sens. Actuators, A, 2016, 242, 50-57.