# Supporting Information

## Low Temperature Solution Synthesis of Reduced Two Dimensional Ti<sub>3</sub>C<sub>2</sub> MXene with Paramagnetic Behaviour

Yeoheung Yoon<sup>‡</sup>, Thi Anh Le<sup>‡</sup>, Anand P. Tiwari, Ikjoon Kim, Michel W. Barsoum<sup>\*</sup>, and Hyoyoung Lee<sup>\*</sup>

### Reaction mechanisms for solvate-electride salts ([Li((NH<sub>2</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>)<sub>3</sub>]<sup>+</sup>·e<sup>-</sup>)

#### <u>Reaction mechanisms for solvate-electride salts ( $[Li((NH_2)_2C_2H_4)_3]^+\cdot e^-$ )</u>

Since the Li-EDA reagent can generate solvated-electride salts in a phase under inert atmospheric condition, all reactions were carried out using fully dried-glassware under inert N<sub>2</sub> condition. This was done to prevent the oxidation of Li to Li<sub>2</sub>O.

There are number of metals at a zero or low oxidation states that can readily donate one or more electrons to materials with accessible LUMO orbitals (Li°, Na°, K°, etc.). These metals can function as electron transfer reagents. For example, when Li metal is mixed with EDA the following reaction occurs<sup>1</sup>:

 $Li + (NH_2)_2 C_2 H_4 \rightarrow [Li((NH_2)_2 C_2 H_4)_3]^+ e^{-1}$ (1)

When Li metal was dissolved in our EDA solution, in the presence of bulk  $Ti_3C_2T_x$  multilayers, the solution turned dark blue, indicating that free radicals or electride salts are formed during the reaction<sup>[1]</sup>.

To indirectly test the importance of working in a reducing atmosphere we bubbled oxygen bubbling at 10 sccm through the reaction solution. In this case the reaction solution never turned blue; instead, the end result was a white powder, presumed to be Li<sub>2</sub>O.



Fig. S1. (A) and (B) TEM images of  $r\text{-}Ti_3C_2T_x$  nanosheets.



**Fig. S2.** XPS spectra obtained on  $Ti_3C_2T_x$  and  $r-Ti_3C_2T_x$  as a function of Li/EDA reduction temperature. (A) Overall spectra, (B) C 1s region, (C) F 1s region, (D) overall Raman spectra and (E) Li 1s region.



**Fig. S3** (A) XPS spectra of Ti 2p region obtained on 3 different samples reduced at 25 °C; (B) Same as a, but reduced at 40 °C; (C) Same as a but reduced at 80 °C; (D) Same as a, but reduced at 120 °C; (E) ESR signals of three samples reduced at 120 °C.



Fig. S4 (A) TGA results of  $Ti_3C_2T_x$  and r- $Ti_3C_2T_x$  films reduced at various temperatures indicated.

(B) Deconvolution of XPS Ti 2p core level r-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> films reduced at various temperatures indicated.



**Fig. S5** Changes in (0002) XRD diffraction peaks of  $r-Ti_3C_2T_x$  flakes as a result of intercalation and de-intercalation processes. (A) EDA intercalated  $r-Ti_3C_2T_x$  dried under various conditions: 1: EDA intercalated, 2: dried at 25 °C for 24 h, 3: dried at 80 °C for 48 h, 4: dried at 150 °C for 72 h. (B) Li intercalated  $r-Ti_3C_2T_x$  washed with EtOH and 5 wt.% HCl solution to remove Li ions from the  $r-Ti_3C_2$  layers: 1: Li intercalated prior to washing; 2: same as 1 but washed with EtOH and 5 wt.% HCl solution.



**Fig. S6** Chemical stability of  $r-Ti_3C_2T_x$  dispersed in water and its dried powder. (A) When  $r-Ti_3C_2T_x$  is dispersed in water (0.1 wt.%), the solution is black; (B) 2-3 days later the color changes to sky-blue. This implies that the  $r-Ti_3C_2T_x$  was not stable under oxygenrich solution conditions. (C) However, when the powder type of  $r-Ti_3C_2T_x$  was stored in air, their paramagnetic property was still maintained even after 30 days later.



**Fig. S7.** Temperature dependence of  $r-Ti_3C_2T_x$  after reduction at low temperature (~ 50 K) illustrates intersecting tangent method of Curie temperature ( $T_c$ ) estimation

| Peak              | Energy (eV) | Assignment                | Intensity as function of reduction | Ref.     |
|-------------------|-------------|---------------------------|------------------------------------|----------|
|                   |             | (Color in Fig. S2B)       | temperature                        |          |
| C 1s,<br>Fig. S2B | 282.0±0.2   | C-Ti-T <sub>x</sub> (red) | ≈ constant                         | (31)     |
|                   | 284.8±0.2   | C-C (blue)                | Increases substantially            | (18, 32) |
|                   | 285.5±0.2   | CH <sub>x</sub> (navy)    | Decreases                          | (18, 32) |
|                   | 286.8±0.2   | C-O (green)               | Increases slightly                 | (18, 32) |
|                   | 289.0±0.2   | -COOH (grey)              | Decreases                          | (18, 32) |

**Table S1.** Summary of XPS peak positions of C 1s. Column four qualitatively describes how the intensity of these peaks change with increasing reduction Temperature.

### Reference

1. L. Reggel, R. Friedel, and I. Wender, J. Org. Chem, 1957, 22, 891.