Supporting Information

Room temperature precipitated dual phase CsPbBr₃-CsPb₂Br₅ nanocrystals for

stable perovskite light emitting diodes

Bai-Sheng Zhu,^{a, b} Huai-Zhi Li,^{a, b} Jing Ge,^{a, c} Hao-Dong Li,^{a, b} Yi-Chen Yin,^{a, b} Kun-Hua Wang,^{a, b} Chen Chen,^{a, b} Ji-Song Yao,^{a, b} Qun Zhang,^{a, c} Hong-Bin Yao^{*a, b, d}

^aDivision of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, ^bDepartment of Applied Chemistry, ^cDepartment of Chemical Physics, ^dHefei Science Center of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China E-mail: yhb@ustc.edu.cn Group website: http://staff.ustc.edu.cn/~yhb/

Materials and Chemicals. Lead bromide (PbBr₂, Aladdin, 99.99%), cesium bromide (CsBr, Aladdin, 99.99%), di-dodecyl dimethyl ammonium bromide (DDAB, Energy Chemical, 98%), octane (Alfa Aesar, anhydrous 99%), hexylamine (Afla Aesar, 99%), hydrogen bromide (HBr, SCRC, AR), oleic acid (OA, Afla Aesar, 90%), oleylamine (OAm, Aldrich, 70%), octadecene (ODE, Aldrich, 90%), cesium carbonate (Cs₂CO₃, Afla Aesar, 99.99%), butylamine (BuAm, Aladdin, 99.5%), 2-propanol (IPrOH, SCRC, AR), propionic acid (PrAc, SCRC, AR), n-hexane (HEX, SCRC, AR), toluene (SCRC, AR), chlorobenzene (Acroseal, anhydrous 99.8%). methanol (SCRC, AR). trioctylphosphine oxide (TOPO, Aldrich), poly(3.4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT : PSS, Al4083 Clevios), poly(9-vinlycarbazole) (PVK, Aldrich), poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine) (poly-TPD, Xi'an Polymer Light Technology Corp.), 2,4,6-Tris(3-(diphenylphosphinyl)phenyl)-1,3,5-triazine (PO-T2T, Nichem).

Preparation of $C_6H_{13}NH_3Br$ (HABr). 25 mL of methanol and 10 mL of hexylamine were loaded and stirred in a 250 mL of flask under an ice water bath. After the dropwise addition of HBr (13 mL) into the mixture, the ice water bath was removed and the mixture was stirred for 2 hours at room temperature. The product was obtained by a rotary evaporator at 70 °C to remove solvent. Then the material was washed by diethyl ether and subsequently recrystallized from a mixture of diethyl ether and ethanol. After filtration, the product was collected and dried under vacuum at 60 °C for 24 hours. The obtained HABr was stored in a glovebox.

Tables and Figures

Table S1 Fitted (by three-exponential fit) PL lifetimes of all inorganic Cs-Pb-Br perovskites films after annealing at different temperatures.

	Temperature (°C)	τ 1 (ns)	f 1 (%)	τ 2 (ns)	f 2 (%)	τ 3 (ns)	f 3 (%)	τ _{avg} (ns)
HI	25	1.03	27.93	4.35	41.91	21.98	30.16	8.74
	50	0.99	31.49	4.11	40.71	22.18	27.80	8.15
	100	0.66	44.35	3.24	35.60	20.60	20.05	5.57
	150	0.70	49.99	3.47	30.70	20.23	19.31	5.32
	200	-	-	-	-	-	-	-
LARP-SP	25	0.72	24.44	3.64	38.27	19.93	37.29	9.00
	50	0.74	32.43	3.90	34.68	21.34	32.89	8.61
	100	0.53	32.02	3.02	32.69	18.63	35.29	7.96
	150	0.49	38.33	3.17	28.39	20.64	33.28	7.73
	200	-	-	-	-	-	-	-
LARP-DP	25	0.88	22.3	4.18	43.7	17.81	34	8.08
	50	0.54	9.69	5.17	21.83	27.21	68.48	19.81
	100	0.85	1.65	5.81	15.65	36.66	82.7	31.24
	150	0.47	3.5	5.23	10.91	38.86	85.59	33.84
	200	0.38	6.34	5.08	9.63	43.54	84.03	37.01

The measured values were fitted to the equation 2 :

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right)$$

The average lifetimes were calculated using:

 $\tau_{avg} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$

Where τ_1 is a short-lived PL lifetime, τ_2 is an intermediate PL lifetime, and τ_3 is a long-lived PL lifetime. For

HI and LARP-SP NCs films, annealing treatment may cause part loss of surface ligand, leading more surface and trapping states on NCs, which thus resulted in the increase of fraction of short-lived PL lifetime (f_1) and intermediate PL lifetime (f_2), which makes a contribution to the slight reduction of the average lifetime τ_{avg} . However, in dual-phase CsPbBr₃-CsPb₂Br₅ perovskites films, CsPb₂Br₅ nanoplatelets would passivate the surface of CsPbBr₃ NCs with shallow interfacial traps. At room temperature, these trapped excitons can be thermally ionized followed by the formation of radiative excitons, which would promote the multiple excitons recombination. These shallow traps, essentially participate in the photoluminescence processes and can be considered to be in the bright state (PL active), which would cause the increase of the fraction of long-lived PL lifetime with the enhancement of annealing temperature.

Time (min)	EL (nm)	FWHM (nm)		
0	518	19.28		
20	518	19.36		
40	518	19.38		
60	518	19.22		
80	518	19.33		
100	518	19.30		
120	518	19.20		

 Table S2 Details of EL spectral stability of devices based on LARP-DP under 5.5 V continuous voltage operation.

Table S3 Details of EL spectral stability of devices based on HI (a) or LARP-SP (b) continuously operated at5.5 V.

a

EL (nm)	FWHM (nm)		
517	18.18		
517	18.86		
518	19.41		
519	19.88		
520	20.33		
522	21.26		
523	21.83		
	EL (nm) 517 517 518 519 520 522 523		

b

EL (nm)	FWHM (nm)		
518	19.47		
518	19.82		
519	20.27		
520	20.69		
521	21.14		
522	21.93		
524	22.71		
	EL (nm) 518 518 519 520 521 522 522 524		

Emitter Type	Synthetic Method	Synthetic Condition	Ligand	Surface Roughness (nm)	Lmax (Cd m ⁻²)	EL (nm)	EQE (%)	Turn-on Bias (V)	Ref.
CsPbBr ₃ - Cs ₄ PbBr ₆	Polycrystalline film technology	N ₂ ; RT; DMSO	-	-	1150	514 ~ 522	2.4×10 ⁻³	3.0~4.0	3
CsPbBr ₃	Polycrystalline film technology	N ₂ ; RT; DMSO	-	-	13752	522	1.37	3.0 ~ 3.5	4
CsPbBr ₃	НІ	N ₂ ; 140-200 °C; ODE	OA; OLA	-	330	515	3.0	3.0	5
CsPbBr ₃	HI	N ₂ ; 140-200 °C; ODE	OA; OLA	-	15185	512	6.27	3.4	6
CsPbBr ₃ - CsPb ₂ Br ₅	НІ	Ar; 130 °C; ODE	OA; OLA	3.2	3853	527	2.21	4.5 ~ 5.0	7
CsPb ₂ Br ₅	LARP	N ₂ ; DMSO; Toluene	HABr	5	7317	520	1.1	3.8	8
FA- CsPbBr ₃	LARP	Air; RT; Toluene	TOAB; DDAB; OTAc	2.3	55800	515	11.6	2.75	9
CsPbBr ₃	LARP	Air; RT; DMF; Toluene	OA; TOAB	-	110	515	1.5×10 ⁻²	3.2	10
CsPbBr ₃	LARP	Air; RT; Water; DMF; Toluene	OA; OLA	-	4428	518	1.7	3.0~4.0	11
CsPbBr ₃ -CsPb ₂ Br ₅	LARP	Air; RT; Methanol; DMF; Toluene	HABr; DDAB	20	8383	518	0.62	2.5	This work

 Table S4 A comparison of our device with other previously reported green PeLEDs mainly based on LARP

 NCs.

Fig. S1 Schematic illustration of synthetic procedure of dual phase CsPbBr₃-CsPb₂Br₅ NCs carried out by LARP approach. (a) Preparison of PbBr₂ precursor. (b) Synthetic procedure of dual phase CsPbBr₃-CsPb₂Br₅ NCs. (c) Separation of dual phase CsPbBr₃-CsPb₂Br₅ NCs. After DDAB/Centrifugation treatment, the resulted supernatant without being further filtered through 0.45 μm nylon filter, was also collected for XRD characterizations. The corresponding PXRD pattern of dual phase CsPbBr₃-CsPb₂Br₅ NCs without filteration treatment was provided in Fig S2.

Fig. S2 PXRD pattern of dual phase CsPbBr₃-CsPb₂Br₅ NCs (without being filtered through 0.45 μ m nylon filter), together with standard pattern of orthorhombic CsPbBr₃ (black line, (*Pnma*) space group) and tetragonal CsPb₂Br₅ (red line, (*I4/mcm*) space group). The PXRD pattern was collected on Si wafer.

Fig. S3 Photographs of CsPbBr₃-CsPb₂Br₅ colloidal NCs solution treated with various concentration of DDAB under daylight (a) and a UV light irradiation (b), respectively. (c) Absolute PLQYs of samples treated with various concentration of DDAB. (d) Fourier transform infrared (FTIR) spectra of as-synthesized CsPbBr₃-CsPb₂Br₅ NCs and the NCs treated with 0.05 M DDAB (dosage of DDAB during treatment is considerably low). FTIR was used to examine the presence of ligands on as-synthesized and DDAB treated CsPbBr₃-CsPb₂Br₅ NCs,¹ both samples show CH₂ and CH₃ symmetric and asymmetric stretching vibrations in the range of 2859-2961 cm⁻¹, and CH₂ bending vibration at 1466 cm⁻¹. Peak at 1628 cm⁻¹ can be ascribed to the asymmetric NH₃⁺ deformation. There was almost no obvious change in peak intensity before and after DDAB treatment, indicating a little ligand-exchange process occurred between HABr and DDAB on the surface of CsPbBr₃-CsPb₂Br₅ NCs.

Fig. S4 Photographs of large scale synthesized dual phase CsPbBr₃-CsPb₂Br₅ powder (a,b) under ambient conditions and (c) under UV light (365 nm) irradiation. (d) UV-Vis absorption (left) and PL (right) spectrum of CsPbBr₃-CsPb₂Br₅ NCs film coated on a glass slide.

Fig. S5 (a) Typical SEM image of CsPbBr₃-CsPb₂Br₅ NCs film. Elemental mapping images of the dual phase CsPbBr₃-CsPb₂Br₅ NCs film, showing the elemental distribution of (b) Cs, (c) Pb, and (d) Br. (e) Energy Dispersive X-ray Spectroscopy (EDS) of the dual phase CsPbBr₃-CsPb₂Br₅ NCs film. Quantification of the EDS spectrum reveals a Cs: Pb: Br atomic ratio of 1:1.04:3. 53.

Fig. S6 Photographs for all inorganic Cs-Pb-Br perovskite NCs dispersed in toluene taken at daylight or upon 365-nm UV light irradiation during 4 weeks. Vials from top to down are corresponding to the samples synthesized by (a) HI, (b) LARP-SP and (c) LARP-DP, respectively. It can be seen that the samples synthesized through LARP-DP (c) remain essentially unchanged within 28 days, which markedly differentiate s from the phenomena of HI NCs (a) and LARP-SP NCs (b) that underwent a rapid degradation in terms of dispersion color and light emitting under UV light irradiation.

Fig. S7 PL emission photographs, typical SEM and TEM images of all inorganic Cs-Pb-Br perovskite NCs films ((a), (d), (g) for HI, (b), (e), (h) for LARP-SP, (c), (f), (i) for LARP-DP) after annealing at 25 and 50 °C under ambient conditions, respectively.

Fig. S8 TEM images of all inorganic Cs-Pb-Br perovskite NCs after annealing at 100, 150 and 200 °C in air atmosphere, respectively. (a), (d) and (g) refer to HI; (b), (e) and (h) refer to LARP-SP; (c), (f) and (i) refer to LARP-DP, respectively.

Fig. S9 *Ex situ* PXRD patterns of HI-cubic CsPbBr₃ (a) and LARP-SP orthorhombic CsPbBr₃ (b) annealed at different temperatures between 25 and 200 °C in air environment. The cubic CsPbBr₃ and orthorhombic CsPbBr₃ was synthesized by HI and LARP-SP, respectively. The stars in (a) denoted the presence of Pb₂OBr₂ ($2\theta = 35.2^{\circ}$), and PbCO₃ ($2\theta = 37.4^{\circ}$, 39.6°). In (b), $2\theta = 11.7^{\circ}$, 23.5°, 35.4°, 47.8° (CsPb₂Br₅, denoted by •), $2\theta = 13.5^{\circ}$ (Pb₂OCO₃, denoted by •), $2\theta = 27.3^{\circ}$ (PbBr₂, denoted by •) and $2\theta = 28.8^{\circ}$ (PbO, denoted by •).

Fig. S10 (a-f) Typical SEM images of dual phase CsPbBr₃-CsPb₂Br₅ NCs films after annealing for different time at 200 °C. (g) *Ex situ* PXRD patterns of dual phase CsPbBr₃-CsPb₂Br₅ NCs films annealed for different time at 200 °C. The pink star denoted the peaks of CsPb₂Br₅. Inset shows a subtle yet monotonic shift of the (202) peak toward higher degree, which is the result of progressive lattice contraction as the annealing time increasing. (h) The PL intensity variation as a function of annealing time at 200 °C.

Fig. S11 Typical TEM images of dual phase CsPbBr₃-CsPb₂Br₅ NCs films after annealing for different time at 200 °C.

Fig. S12 Cross-sectional SEM image for the dual phase CsPbBr₃-CsPb₂Br₅ NCs based PeLED showing the multilayer structure.

Fig. S13 Molecular structures of various organic materials, including hole injection layer (PEDOT : PSS), hole transporting layer (PVK, Poly-TPD), and electron transporting layer (PO-T2T).

Fig. S14 PL spectrum of the dual phase CsPbBr₃-CsPb₂Br₅ NCs film, and EL spectrum of as-fabricated PeLED.

Fig. S15 Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for the dual phase CsPbBr₃-CsPb₂Br₅ NCs based PeLED in this work.

Fig. S16 EQE distribution of dual phase CsPbBr₃-CsPb₂Br₅ NCs based PeLED. The statistical results are based on 40 devices.

Fig. S17 Normalized EL spectral stability of PeLED devices (CsPbBr₃-CsPb₂Br₅ NCs) continuously operated under 5.5 V within 2 h (a) and 12 h (b), respectively. The EL spectra of dual phase CsPbBr₃-CsPb₂Br₅ NCs based device remained almost identical under continuous operation at 5.5 V within 2 hours. Even after 12 hours, only a slight red-shift of 3 nm in EL peak and 2 nm decrease in the FWHM are recorded.

Fig. S18 Normalized EL spectra of devices based on HI (a) or LARP-SP (b) under 5.5 V continuous operation.

Fig. S19 Atomic force microscopy (AFM) characterization of the dual phase CsPbBr₃-CsPb₂Br₅ NCs film showing its rough surface.

References

- J. Pan, L. N. Quan, Y. B. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. J. Yuan, L. Sinatra, N. M. Alyami, J. K. Liu, E. Yassitepe, Z. Y. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, *Adv. Mater.*, 2016, 28, 8718.
- 2 S. B. Sun, D. Yuan, Y. Xu, A. F. Wang and Z. T. Deng, Acs Nano, 2016, 10, 3648.
- 3 J. W. Xu, W. X. Huang, P. Y. Li, D. R. Onken, C. C. Dun, Y. Guo, K. B. Ucer, C. Lu, H. Z. Wang, S. M. Geyer, R. T. Williams and D. L. Carroll, *Adv. Mater.*, 2017, 29, 1703703.
- 4 H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J. M. Heo, S. Ahn and T. W. Lee, *Adv. Mater.*, 2017, **29**, 1700579.
- 5 J. Pan, L. N. Quan, Y. B. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. J. Yuan, L. Sinatra, N. M. Alyami, J. K. Liu, E. Yassitepe, Z. Y. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, *Adv. Mater.*, 2016, 28, 8718.
- 6 J. H. Li, L. M. Xu, T. Wang, J. Z. Song, J. W. Chen, J. Xue, Y. H. Dong, B. Cai, Q. S. Shan, B. N. Han and H. B. Zeng, *Adv. Mater.*, 2017, 29, 1603885.
- 7 X. L. Zhang, B. Xu, J. B. Zhang, Y. Gao, Y. J. Zheng, K. Wang and X. W. Sun, Adv. Funct. Mater., 2016, 26, 4595.
- 8 C. J. Qin, T. Matsushima, A. S. D. Sandanayaka, Y. Tsuchiya and C. Adachi, *J. Phys. Chem. Lett.*, 2017, **8**, 5415.
- 9 J. Z. Song, J. H. Li, L. M. Xu, J. H. Li, F. J. Zhang, B. N. Han, Q. S. Shan and H. B. Zeng, Adv. Mater., 2018, 30, 1800764.
- 10 S. Wei, Y. C. Yang, X. J. Kang, L. Wang, L. J. Huang and D. C. Pan, Inorg. Chem., 2017, 56, 2596.
- 11 X. Y. Zhang, X. Bai, H. Wu, X. T. Zhang, C. Sun, Y. Zhang, W. Zhang, W. T. Zheng, W. W. Yu and A. L. Rogach, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 3337.