Supporting information

Construction of Al-ZnO/CdS Photoanodes Modified with Distinctive

Alumina Passivation Layer for Improvement of Photoelectrochemical

Efficiency and Stability

Ruyi Wang,^{a,b} Xiaodong Li,^e Lu Wang,^{a,b} Xirui Zhao,^c Guangcheng Yang,^e Aidong Li,^c Congping Wu,^{a,d}

Qing Shen,^f Yong Zhou, *a,b,d and Zhigang Zou^{a,b,c,d}

^aNational Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Department of Physics, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093, P. R. China.

E-mail: zhouyong1999@nju.edu.cn.

^b Jiangsu Provincial Key Laboratory of Nanotechnology

^c College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China.

^d Kunshan Sunlaite New Energy Co. Ltd., Kunshan Innovation Institute of Nanjing University,

Kunshan, No. 1666, South Zuchongzhi Road, Jiangsu 215347, P. R.China.

^e Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China.

^{*f*} Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo 185-8585, Japan.

Figure S1. Schematic diagram of depositing CdS on Al-ZnO NRs by SILAR.

Figure S2. FE-SEM image and corresponding EDS, (a) and (d) for Al-ZnO, (b) and (e) for 0.01 Al-ZnO/CdS, (c) and (f) for 0.03 Al-ZnO/CdS.

Figure S3. (a) TEM and (b) HRTEM images of ZnO. The inset of (a) shows selected area electron diffraction patterns.

Figure S4. (a) Linear sweep voltammograms of Al-ZnO with different Al doping amount. The dotted line is the corresponding dark current curves), and (b) the corresponding amperometric I-t curves plotted at an external potential of 0 V versus Ag/AgCl, under chopped illumination.

Figure S5. (a) and (b) UV-vis absorption spectra of ZnO and Al-ZnO. (c) Mott-Schottcky plots for ZnO and Al-ZnO, measured at 1 kHz. (d) Band positions of ZnO and Al-ZnO.

Figure S6. The mobility and charge carrier bulk concentration obtained from Hall Effect measurement of Al-ZnO with different Al doped concentration.

Figure S7. Photoconversion efficiencies of Al-ZnO and Al-ZnO/CdS with different SILAR cycles.

Figure S8. The HRTEM images of the Al-ZnO/CdS photoanode coating with \sim 3 nm Al₂O₃ by (a) DCMS and (b) ALD.

Figure S9. The HRTEM images of the Al-ZnO/CdS photoanode coating with $\,\sim$ 5 nm Al₂O₃ by DCMS.

Figure S10. (a) EIS Nyquist plots of Al-ZnO/CdS coated with 1 and 3 nm Al_2O_3 by ALD and DCMS. (b) Amplified section in (a).

Figure S11. Al 2p spectra of Al-ZnO/CdS DCMS 3nm Al_2O_3 before and after Ar sputter.

Figure S12. (a) Photocurrent stability of the Al-ZnO/CdS DCMS 1 nm Al₂O₃ obtained at 1.23 V vs. RHE. (b) H₂ evolution for the Al-ZnO/CdS DCMS 1 nm Al₂O₃ sample derived from the potentiostatic photocurrent measurement. The dashed line correspond to a faradaic efficiency of 100%.

Photoanode	Electrolyte	Photocurrent density	Maximum	Ref.
		(mA/cm ²)	Photoconversion	
			efficiency (%)	
ZnO/CdS NAs	0.25 M Na ₂ S and	6	_	[1]
	0.35 M Na₂SO ₃	(0 V _{Ag/AgCl} , λ≥435 nm)		
ZnO/Ag/CdS NAs	0.25 M Na₂S and	4	3.13	[2]
	0.35 M Na ₂ SO ₃	(0V _{SCE} , 100mW/cm ²)	(0.34 V vs.RHE)	
3D branched ZnO	0.5 M Na₂S	3.58	3.1	[3]
NWA/CdS		(0 V _{Ag/AgCl} , 70 mW/cm ²)	(not given)	
ZnFe ₂ O ₄ /ZnO/CdS	0.5 M Na ₂ S	3.88	4.43	[4]
NAs		(0 V _{Ag/AgCl} ,70 mW/cm ²)	(0.2 V vs.RHE)	
ZnO/CdS NAs	1 M Na ₂ S	3.31	_	[5]
		(0 V _{Ag/AgCl} , 100 mW/cm ²)		
ZnO/CdS NTs	0.25 M Na ₂ S and	~7.5	_	[6]
	0.35 M Na₂SO ₃	(0 V _{SEC} , λ≥420 nm)		
ZnO NRs/CdS	1 M Na ₂ S	6	_	[7]
		(0 V _{Ag/AgCl} , 100 mW/cm ²)		
3D ZnO/Au/CdS	0.25 M Na ₂ S and	5.7	_	[8]
sandwich	0.35 M Na₂SO ₃	(0 V _{Ag/AgCl} , 100 mW/cm ²)		
ZnO NRs/CdS	0.25 M Na ₂ S and	9.16	4.03	[9]
	0.35 M Na₂SO ₃	(0.4 V _{SCE} , 100 mW/cm ²)	(about -0.4 V _{SCE})	
H-ZnO/CdS/Ni(OH) ₂	0.5 M Na ₂ SO ₄	4.65	4.12	[10]
	(with pH buffered	(0.4 $V_{Ag/AgCl}$, 60 mW/cm ²)	(0.68 V vsRHE)	
	to ~7)			
Al-ZnO/CdS 60	0.25 M Na₂S and	9.7	5.75	This
SILAR cycles	0.35 M Na₂SO ₃	(0 V _{Ag/AgCl} , 100 mW/cm ²)	(0.38 V vs.RHE)	work
Al-ZnO/CdS/Al ₂ O ₃	0.25 M Na₂S and	11.4	6.6	This
5 s DCMS	0.35 M Na ₂ SO ₃	(0 V _{Ag/AgCl} , 100 mW/cm ²)	(0.41 V vs.RHE)	work

Table S1. A brief review of similar ZnO/CdS photoelectrodes and the corresponding photoresponses.

References

- (1) Y. M. Tang, P. Traveerungroj, H. L. Tan, P. Wang, R. Amal, Y. H. Ng, *J. Mater. Chem. A* 2015, **3**, 19582-19587.
- (2) X. Yang, H. Li, W. Zhang, M. X. Sun, L. Q. Li, N. Xu, J. D. Wu, J. Sun, ACS Appl. Mater. Interfaces 2017, 9, 658-667.
- (3) Z. M. Bai, X. Q. Yan, Y. Li, Z. Kang, S. Y. Cao, Y. Zhang, Adv. Energy. Mater. 2016, 6, 1501459.
- (4) S. Y. Cao, X. Q. Yan, Z. Kang, Q. J. Liang, X. Q. Liao, Y. Zhang, *Nano Energy* 2016, **24**, 25-31.
- (5) C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, *Applied Catalysis B: Environmental* 2013, 138, 175-183.
- (6) P. Y. Kuang, Y. Z. Su, K. Xiao, Z. Q. Liu, N. Li, H. J. Wang, J. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 16387-16394.
- (7) Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano

2010, **4**, 3789-3800.

- (8) C. Li, X. T. Zhu, H. F. Zhang, Z. C. Zhu, B. Liu, C. W. Cheng, *Adv. Mater. Interfaces* 2015, **2**, 1500428.
- (9) Q. Nie, L. Yang, C. Cao, Y. M. Zeng, G. Z. Wang, C. Z. Wang, S. W. Lin, *Chemical Engineering Journal* 2017, **325**, 151-159.
- (10) Y. C. Liu, Z. Kang, H. N. Si, P. F. Li, S. Y. Cao, S. Liu, Y. Li, S. C. Zhang, Z. Zhang, Q. L. Liao, L. Wang,
 Y. Zhang, *Nano Energy* 2017, **35**, 189-198.