Electronic Supplementary Information

In situ Synthesis of Ultrafine Metal Clusters triggered by Dodecaborate Supramolecular Organic Frameworks

Bin Qi, Xin Li, Liang Sun, Bo Chen, Hao Chen, Chenchen Wu, Haibo Zhang* and Xiaohai Zhou*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

Content

Figure S1. FT-IR spectrum of pure Cs ₂ [closo-B ₁₂ H ₁₂], CB[7] and Cs ₂ [closo-B ₁₂ H ₁₂]@CB[7]
assemblies
Figure S2. Views of the CB6/B ₁₂ H ₁₂ ²⁻ complex XRD structure
Figure S3. Views of the CB7/B ₁₂ Cl ₁₂ ²⁻ complex XRD structure
Figure S4. The photographic images of the obtained final metal/BOFs products4
Figure S5. XRD results of CBn-BOFs and Au/CBn-BOFs5
Figure S6. The survey XPS spectra (a) and high-resolution XPS Au 4f spectra (b) of Au-BOFs5
Figure S7. XRD results of CBn-BOFs and Pd/CBn-BOFs
Figure S8. The survey XPS spectra (a) and high-resolution XPS Pd 3d spectra (b) of Pd-BOFs6
Figure S9. XRD results of Ag/ BOFs7
Figure S10. The survey XPS spectra (a) and high-resolution XPS Ag 3d spectra (b) of Ag/BOFs7
Figure S11. XRD results of Pt/ BOFs
Figure S12. The survey XPS spectra (a) and high-resolution XPS Pt 4f spectra (b) of Pt/BOFs8
Figure S13. The GC standard curves of (a) toluene and FAL, (b) toluene and FOL9
Figure S14. The GC spectrum of the conversion of FAL to FOL treated with various Au/BOFs and BOFs
catalysts9
Figure S15. The GC spectrum of the recycling tests of FAL to FOL treated with Au/CB7-BOFs
catalysts
Figure S16. The TEM image and powder XRD pattern of the Au/CB7-BOFs catalysts after 15 th round of
catalysis10
Table S1. Comparison of the catalytic performances of Au/BOFs catalyst with already reported catalysts towards the
selective reduction of FAL with FOL10
¹ H NMR and ¹³ C NMR spectra for the products listed in Table 2 of the main text11
Reference

Figure S1. FT-IR spectrum of pure Cs₂[*closo*-B₁₂H₁₂], CB[7] and Cs₂[*closo*-B₁₂H₁₂]@CB[7] assemblies.

Figure S2. Views of the CB6/B₁₂H₁₂²⁻ complex XRD structure.

Figure S3. Views of the CB7/B₁₂Cl₁₂^{2–} complex XRD structure.

Figure S4. The photographic images of (a) the metal/BOFs reaction systems standing for 0.5 h, (b) the obtained final metal/BOFs products.

Figure S5. XRD results of CBn-BOFs and Au/CBn-BOFs.

Figure S6. The survey XPS spectra (a) and high-resolution XPS Au 4f spectra (b) of Au-BOFs.

Figure S7. XRD results of CBn-BOFs and Pd/CBn-BOFs.

Figure S8. The survey XPS spectra (a) and high-resolution XPS Pd 3d spectra (b) of Pd-BOFs.

Figure S10. The survey XPS spectra (a) and high-resolution XPS Ag 3d spectra (b) of Ag/BOFs.

Figure S12. The survey XPS spectra (a) and high-resolution XPS Pt 4f spectra (b) of Pt/BOFs.

Figure S13. The GC standard curves of (a) toluene and FAL, (b) toluene and FOL. A represented the integral value in the GC spectrum.

Figure S14. The GC spectrum of the conversion of FAL to FOL treated with various a) b) c) d) Au/BOFs and e) BOFs catalysts.

Figure S15. The GC spectrum of the recycling tests of FAL to FOL treated with Au/CB7-BOFs catalysts.

Figure S16. The TEM image (a) and powder XRD pattern (b) of the Au/CB7-BOFs catalysts after 15th round of catalysis.

catalyst	solvent	H ₂ pressure (bar)	temperature (°C)	time (h)	FOL yield (%)	Publication date
Ru(acac) ₃	/	30	120	9	98.1	2018 ^[1]
Cu/AC-SO ₃ H	2-propanol	4	100	3	47.3	2017 ^[2]
SO42-/SnO2-APG	/	1	170	0.33	93.1	2017 ^[3]
Pt-NPs@SiO ₂	heptane	40	80	4	87	2017 ^[4]
LaCu _{0.67} Si _{1.33}	methanol	30	120	3	99	2017 ^[5]
Ru-NNS	2-propanol	30	80	1	99	2017 ^[6]
m-PhPZr	iPrOH	1	120	2	99	2017 ^[7]
Co-Ru/C	2-propanol	1	150	4	100	2016 ^[8]
Fe-Ru NPs@SILP	/	20	120	18	99	2016 ^[9]
Ir@CN	H ₂ O/HCOOH	1	100	18	99	2015 ^[10]
Au/BOFs	2-propanol	1	45	1	99	This work

Table S1. Comparison of the catalytic performances of Au/BOFs catalyst with already reported catalysts towards the selective reduction of FAL with FOL.

¹H NMR and ¹³C NMR spectra for the products listed in Table 2 of the main text

-3.72

References

- [1] F. Christie, A. Zanotti-Gerosa, and D. Grainger, ChemCatChem, 2018, 10, 1012–1018.
- [2] W. B. Gong, C. Chen, Y. Zhang, H. J. Zhou, G. Z. Wang and Huijun Zhao, ACS Sustainable Chem. Eng., 2017, 5, 2172-2180.
- [3] Y. C. He, Y. Ding, C. L. Ma, J. H. Di, C. X. Jiang and A. T. Li, Green Chem., 2017, 19, 3844–3850.
- [4] J. Llop Castelbou, K. C. Szeto, W. Barakat, N. Merle, C. Godard, M. Taoufik and C. Claver, Chem. Commun., 2017, 53, 3261–3264.
- [5] T. N. Ye, Ya. F. Lu, J. Li, T. Nakao, H. S. Yang, T. Tada, M. Kitano and H. Hosono, J. Am. Chem. Soc., 2017, 139, 17089–17097.
- [6] P. Puylaert, J. Medlock, W. Bonrath, L. Lefort, S. Hinze and J. G. de Vries, Chem. Eur. J., 2017, 23, 8473 8481.
- [7] H. Li, Z. Fang, J. He and S. Yang, ChemSusChem, 2017, 10, 681-686.
- [8] Z. Gao, L. Yang, G. L. Fan and Feng Li, ChemCatChem, 2016, 8, 3769–3779.
- [9] K. L. Luska, A. Bordet, S. Tricard, I. Sinev, W.g Grünert, B. Chaudret and W. Leitner, ACS Catal., 2016, 6, 3719–3726.
- [10] Z. Wang, L. Huang, L. F. Geng, R. Z. Chen, W. H. Xing, Y. Wang, J. Huang, Catal Lett., 2015, 145, 1008–1013.