Supporting Information

Nanoflower-Like N-Doped C/CoS₂ as High-Performance Anode Materials for Na-Ion Batteries

Yuelei Pana, Xudong Chenga*, Lunlun Gonga, Long Shib, Heping Zhanga*

a State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China

b Civil and Infrastructure Engineering Discipline, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia

The file includes Fig. S1-S9.

Corresponding author.

^{* (}X.C.) E-mail address: chengxd@ustc.edu.cn

^{* (}H.Z.) E-mail address: zhanghp@ustc.edu.cn

Fig. S1 XRD pattern of the obtained N-C/CoS_x hybrid composites after solvothermal process.

Fig. S2 SEM images of bare CoS₂.

Fig. S3 XRD pattern of the bare CoS_2 .

Fig. S4 TG curve of nanoflower-like N-C/CoS₂ composites to determine the carbon

content in the composites. The carbon mass loss is assigned to the temperature ranging from 400 to 500 °C.

Fig. S5 Charge-discharge curves of N-C/CoS₂ electrodes using 1 M NaCF₃SO₃ in (a) EC/DEC, (b) PC at 1 A g⁻¹ in potential range of 0.4-2.9 V and (c, d) cycling performance in the two different solvents.

Fig. S6 Electrochemical impedance spectra of $N-C/CoS_2$ and bare CoS_2 .

Fig. S7 i vs. $v^{1/2}$ plots at each redox peak of CV curves (peak current i, scan v): Peak 1, Peak 2, Peak 3, Peak 4, Peak 5, respectively.

Fig. S8 CV curves with the pseudocapacitive fraction shown by the red region at various scan rates: (a) scan rate =0.1 mV/s, (b) scan rate =0.3 mV/s, (c) scan rate =0.5 mV/s, (d) scan rate =0.7 mV/s, (e) scan rate =1.0 mV/s, (f) scan rate =2.0 mV/s.

Fig. S9 SEM image of nanoflower-like N-C/CoS₂ electrode after 50 cycles.