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Experimental Details

The preparation of Ni3Se2 electrode with optimal 3DHNA grown on F-Ni: Before using, these F-Ni 

were cleaned with hydrochloric acid and ethyl alcohol, and then dried in the oven. The hydrazine-Se 

solution was prepared by adding Se powder (Aladdin, 99.9%, 17.6 mg) and cetyltrimethyl ammonium 

bromide (Aladdin, 99.0%, 20 mg) into hydrazine hydrate (N2H4·H2O, 15 mL). The solution was stirred at 

room temperature for 5 h and transferred into 50 mL autoclave. Then, a few pieces of F-Ni that have 

been cut into circles with diameter of 12 mm were put into the solution and reacted at 150 oC for 12 h. 

The mass of F-Ni were kept the same. After cooling down to room temperature, the F-Ni were taken 

out and rinsed with water and ethyl alcohol several times, and then dried at 60 oC to acquire 3DNA 

electrode. Finally, 3DNA electrode were annealed at 600 oC for 2 h at the N2 atmosphere to obtain 

Ni3Se2 electrode with optimal 3DHNA. The electrodes obtained by annealing the 3DNA electrode at 500 

and 700 oC were also prepared to explore the evolution mechanism of the NA at high temperature. In 

order to determine the mass of active material on 3DNA electrode, the same experiment process was 

carried out expect no addition of Se powder (denoted as without Se). As a result, the active material 

loading of 3DNA can be calculated as following:

            mactive material = (m3DNA - mwithout Se) × 137 ÷ 78                                 (1)  

Where 137 and 78 stand for the molecular weight of NiSe and Se.

Material characterizations: The XRD patterns of the electrodes before and after annealing were 

obtained by Rigaku P/max 2200VPC with Cu Kα radiation of λ =1.5406 Å. In order to detect the mass 

change of the 3DNA electrode during the heat treatment, TGA (Pyris Diamond, PerkinElmer) was carried 

out in a nitrogen flow with a heating rate of 10 oC min-1 until 700 oC. The element composition and 

chemical state of Ni3Se2 electrode with optimal 3DHNA was explored by XPS (ESCALAB 250, Thermo). 



S-3

SEM (FEI XL 30) and TEM (JEOL JEM-2010F) were employed to characterize the morphology of the 

electrodes.

Electrochemical measurements: The 2032 coin cell was assembled in the glove box with the water 

and oxygen value lower than 0.1 ppm. The prepared electrode served as cathode without using carbon 

and binder while the metal sodium was anode. The active material loading was about 4 mg cm-2. The 

electrolyte used was the solution of 1 M NaClO4 in a 1:1 volume mixture of ethylene 

carbonate/propylene carbonate with 5 wt% fluoroethylene carbonate. The electrochemical reaction 

process was investigated by CV and EIS through the electrochemical station (CHI750E). CV tests were 

performed at the voltage interval of 0.001-3 V at the scan rate of 0.1 mV s-1. EIS results were acquired 

in the perturbation amplitude of 5 mV between the frequency of 105 Hz and 10 mHz. Galvanostatic 

tests were conducted through LAND CT2001A battery-testing instrument within the voltage range of 

0.001-3 V. 
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𝑁𝑖𝑆𝑒 + 2𝑁𝑎 + + 2𝑒 ‒ = 𝑁𝑎2𝑆𝑒 + 𝑁𝑖                                 (2)

𝑁𝑖𝑆𝑒2 + 4𝑁𝑎 + + 4𝑒 ‒ = 2𝑁𝑎2𝑆𝑒 + 𝑁𝑖                            (3)

𝑁𝑖𝑆𝑒2/3 + 4/3𝑁𝑎 + + 4/3𝑒 ‒ = 2/3𝑁𝑎2𝑆𝑒 + 𝑁𝑖          (4)
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Fig. S1 (a) Low- and (b) high-resolution SEM images of 3DNA electrode. The low- and high-

resolution SEM images of the electrodes obtained by annealing the 3DNA at (c, d) 500 oC and (e, f) 

700 oC.
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Fig. S2 (a) XRD pattern of the 3DNA electrode.
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Fig. S3 XRD patterns of the electrodes obtained by annealing the 3DNA electrode at different 
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temperatures.
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Fig. S4 TGA result of 3DNA and pure F-Ni electrode from room temperature to 700 oC in the N2 

atmosphere with the heating rate of 10 oC min-1.
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Fig. S5 XRD result of the pure F-Ni after treated at 600 oC.
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Fig. S6 The cycle performance of the pure F-Ni after treated at 600 oC at 0.2 mA cm-2.
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Fig. S7 The comparison of cycle retention for the electrodes obtained by annealing the 3DNA 

electrode at different temperatures. 
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Fig. S8 N2 adsorption-desorption isothermal of the 3DHNA electrode acquired at 500 oC and 600 

oC.
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Fig. S9 SEM images after cycles for the electrode obtained by annealing the 3DNA electrode at 500 

oC. 

Table S1 The elemental composition of Ni3Se2 electrode with optimal 3DHNA from the XPS result.

Element Ni Se O

Atom% 15.39% 3.12% 81.49%
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Fig. S10 The charge-discharge curves of the Ni3Se2 electrode with optimal 3DHNA for different 

cycles at 0.2 mA cm-2.
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Fig. S11 The electrochemical performance of the Ni3Se2 electrode with optimal 3DHNA. (a) Cs at 

different current densities, (b) cycle performance at 50 mA g-1, (c) capacity retention at 50 mA g-1 

and (d) cycle performance at 200 mA g-1.
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Fig. S12 (a) The charge-discharge curves of the Ni3Se2 electrode with optimal 3DHNA at different 

current densities. (b) EIS results before and after cycle.



S-11

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.8

1.2

1.6

2.0

Current density (A g-1)

C
a
(m
A
h
cm

-2
)

This work

Ref.1

Ref.2

Ref.3

Ref.4

Ref.5

Ref.6

Ref.7

Ref.8

Fig. S13 The comparison of the Ca in this work with other reported metal selenides at different 

current densities.1-8
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Fig. S14 SEM images of the Ni3Se2 electrode with optimal 3DHNA after cycles.
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