Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting information

Largely Enhanced Photocatalytic Hydrogen Production for CdS/(Au-ReS₂) Nanospheres by the Dielectric-Plasmon Hybrid Antenna Effect

Jia Liu,^{‡a} Kai Chen,^{‡b} Gui-Ming Pan,^{‡a} Zhi-Jun Luo,^a Ying Xie,^a Ying-Ying Li,^a Yong-Jie Lin,^b Zhong-Hua Hao,^a Li Zhou,*a Si-Jing Ding*a and Qu-Quan Wang*a,^b

^aDepartment of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.

^bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.

‡These authors contributed equally to this work.

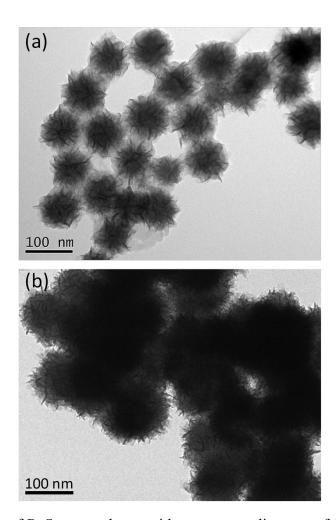
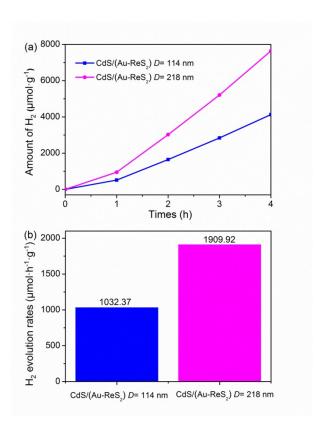



Figure S1. TEM images of ReS₂ nanospheres with an average diameter of 114 ± 11 nm (a) and 218 ± 25 nm (b).

Figure S2. (a) Time evolution for photocatalytic generation of the H₂ evolution amount versus irradiation time for CdS/(Au-ReS₂) complex with $D=114\pm11$ nm and $D=218\pm25$ nm. (b) Comparison of the H₂ evolution activities of CdS/(Au-ReS₂) complex with $D=114\pm11$ nm and $D=218\pm25$ nm.