Electronic Supplementary Information

Continuous Processing of Phase-Change Materials into Uniform Nanoparticles for Near-Infrared-Triggered Drug Release

Qiaoshan Chen,^{a,b} Chunlei Zhu,^a Da Huo,^a Jiajia Xue,^a Haoyan Cheng,^a Baohong Guan,^b and Younan Xia^{*a,c}

^a The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA E-mail: younan.xia@bme.gatech.edu

^b Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China

^c School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Figure S1. Digital photograph of the homemade fluidic device fabricated using a PVC tube, a syringe needle, and a glass capillary tube.

Figure S2. Size distribution curves (by DLS) of the PCM nanoparticles prepared using different total volumetric rates at a fixed FRR of 50 when the concentrations of the PCM solution and lipid solution were fixed at 6 and 0.2 mg/mL, respectively.

Figure S3. Size distributions curves (by DLS) of the PCM nanoparticles prepared using PCM solutions with different concentrations. The FRR and total volumetric rate were kept at 50 and 700 μ L/min, respectively, while the concentration of the lipid solution was 0.2 mg/mL.

Figure S4. Dynamic light scattering (DLS) data of the plain PCM nanoparticles and the DOX-ICG-loaded nanoparticles .