# Electronic Supplementary Information

*In-situ* growth of α-Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> core-shell wormlike nanoarrays for highly efficient photoelectrochemical water oxidation reaction

Chenmei Li,<sup>†,‡,I</sup> Zhihui Chen,<sup>§,I</sup> Weiyong Yuan,<sup>\*,†,‡</sup> Qing-Hua Xu,<sup>§</sup> and Chang Ming Li<sup>†,‡</sup>

<sup>†</sup>Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, China.

<sup>‡</sup>Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.

<sup>§</sup>Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

\*Corresponding author. E-mail address: yuanweiyong@swu.edu.cn

These authors contributed equally.

#### Contents

- 1. Calculation of photoconversion efficiency
- 2. Calculation of flatband potential and donor density
- 3. Calculation of Debye length
- 4. Calculation of depletion layer width
- 5. Linear sweep voltammograms collected from α-Fe<sub>2</sub>O<sub>3</sub> synthesized at different pH under light illumination (Fig. S1).
- 6. Photograph of the a-Fe<sub>2</sub>O<sub>3</sub> nanostructured array synthesized at pH 1.7 and annealed at 800 °C (Fig. S2).

7. Linear sweep voltammograms collected from a-Fe<sub>2</sub>O<sub>3</sub> nanostructured arrays synthesized at pH 1.7 and annealed at 700 °C and 730 °C (Fig. S3).

8. Linear sweep voltammograms collected from  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructured arrays synthesized at pH 1.7, annealed at 550 °C for 1 h and at 730 °C for different times (Fig. S4).

- 9. EDX spectrum of WN-α-Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> (Fig. S5).
- 10. High-magnification FESEM image of WN-α-Fe<sub>2</sub>O<sub>3</sub> before and after in-situ growth of Co<sub>3</sub>O<sub>4</sub> (Fig. S6).
- 11. FESEM images of WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> after growth of Co<sub>3</sub>O<sub>4</sub> at reactant concentrations 1.2 times of the original ones (Fig. S7).

12. XRD pattern of the  $Co_3O_4$  precursor grown on WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (Fig. S8).

13. Enlarged Linear sweep voltammograms collected from pristine  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> in 1 M KOH aqueous solution in dark (Fig. S9).

14. PEC performance of representative Fe2O3-based photoanodes for water splitting (Table S1).

15. Linear sweep voltammograms collected from WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> before and after annealing in Ar and from WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> annealed in air and in Ar in 1 M KOH aqueous solution under light illumination (Fig. S10).

16. Linear sweep voltammograms collected from  $WN-\alpha$ - $Fe_2O_3@Co_3O_4$  in 1 M KOH aqueous solution under chopped light illumination (Fig. S11).

17. Photocurrent retention versus time curves of pristine WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and WN-Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> under light illumination at 1 V vs. RHE (Fig. S12).

18. Linear sweep voltammograms collected from  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> synthesized with different reactant concentrations in 1 M KOH aqueous solution under light illumination (Fig. S13).

## 1. Calculation of photoconversion efficiency

The photoconversion efficiency of a photoanode was calculated according to the following formula:<sup>[1-2]</sup>

$$\eta\% = \frac{J(1.23 - V)}{P} \times 100$$

Where J is the current density under simulated sunlight irradiation, V is the applied voltage versus RHE, and P is the light intensity (100 mW•cm<sup>-2</sup>).

## 2. Calculation of flatband potential and donor density

The depletion layer capacitance obtained from the electrochemical impedance spectra can be described by the Mott–Schottky equation:<sup>[1, 3]</sup>

$$\frac{1}{C^2} = \frac{2}{e_0 \varepsilon \varepsilon_0 N_d} [(V - V_{FB}) - \frac{kT}{e_0}]$$

where  $e_0$  is the electron charge,  $\varepsilon$  the dielectric constant of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>,  $\varepsilon_0$  the permittivity of vacuum (8.85 × 10<sup>-12</sup> N<sup>-1</sup> C<sup>2</sup> m<sup>-2</sup>),  $N_d$  the donor density, V the electrode applied kT

potential,  $V_{FB}$  the flatband potential, and  $e_0$  is a temperature-dependent correction term. Therefore,  $V_{FB}$  can be determined from the intersection point between the extrapolated

1

linear line and x-axis in Mott–Schottky (M-S) plots ( $\overline{C^2}$  versus V) and  $N_d$  can be estimated from the slope of the M-S plots according to the following equation:<sup>[1, 3]</sup>

$$N_d = \frac{2}{e_0 \varepsilon \varepsilon_0} \left[\frac{d \frac{1}{C^2}}{dV}\right]^{-1}$$

3. Calculation of Debye length

The charge carrier diffusion lengths (Debye length,  $L_D$ ) for both electrodes were also calculated according to the following equation:<sup>[1, 4]</sup>

$$L_D = \left(\frac{\varepsilon \varepsilon_0 kT}{e^2 N_D}\right)^{\frac{1}{2}}$$

where k is the Boltzmann constant (1.38×10<sup>-23</sup> J K<sup>-1</sup>) and T is the absolute temperature (K).

4. Calculation of depletion layer width

The depletion layer width (W) at 0.0 V vs. SCE can be calculated via the following equation:<sup>[1, 4]</sup>

$$W = \left(\frac{2\varepsilon\varepsilon_0\phi}{eN_D}\right)^{\frac{1}{2}}$$

where  $\phi = V - V_{FB} \phi = V - V_{FB}$  is the maximum potential drop in the depletion layer.



Figure S1. Linear sweep voltammograms collected from  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> synthesized at different pH under light illumination.



Figure S2. Photograph of the  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructured array synthesized at pH 1.7 and annealed at 800 ° C.



Figure S3. Linear sweep voltammograms collected from  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructured arrays synthesized at pH 1.7 and annealed at 700 °C and 730 °C.



Figure S4. Linear sweep voltammograms collected from  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanostructured arrays synthesized at pH 1.7, annealed at 550 °C for 1 h and at 730 °C for different times.



Figure S5. EDX spectrum of WN-a-Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub>.



Figure S6. High-magnification FESEM image of WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> before (A) and after (B) in-situ growth of Co<sub>3</sub>O<sub>4</sub>.



Figure S7. FESEM images of WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> after growth of Co<sub>3</sub>O<sub>4</sub> at reactant concentrations 1.2 times of the original ones.



Figure S8. XRD pattern of the Co<sub>3</sub>O<sub>4</sub> precursor grown on WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. Except the peaks originating from FTO (marked with •) and WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (marked with •), the XRD pattern shows characteristic ones of cobalt-basic-carbonate phase (marked with •) located at 31°, 39°, and 59°, which correspond to (300), (231), and (412) planes of orthorhombic Co(CO<sub>3</sub>)<sub>0.5</sub>(OH)·0.11H<sub>2</sub>O (JCPDS card no. 048-0083).<sup>[5-6]</sup>



Figure S9. Enlarged linear sweep voltammograms collected from pristine WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> in 1 M KOH aqueous solution in dark. The inset is the curves further enlarged.

| Photoanode                                                            | Photocurrent<br>density (1.23 V<br>vs. RHE) | Onset<br>potential (V<br>vs. RHE) | Maximum<br>photoconversion<br>Efficiency | Light source<br>used                                | Electrolyte   | Reference |
|-----------------------------------------------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------------------|---------------|-----------|
|                                                                       |                                             |                                   |                                          |                                                     |               |           |
|                                                                       | 2.0                                         | 0.50                              |                                          | 100 mW cm <sup>-2</sup>                             | buffer (pH 7) | ,         |
| rGO modified 3D                                                       | 1.06                                        | ~0.8                              | 0.102%                                   | AM 1.5 G,                                           | 1 M NaOH      | 8         |
| urchin-like $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                  |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             |               |           |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> with in-                     | 4.0                                         | 0.66                              |                                          | AM 1.5 G,                                           |               |           |
| situ grown Co <sub>3</sub> O <sub>4</sub>                             | 1.2                                         | 0.66                              |                                          | 100 mW cm <sup>-2</sup>                             | 1 M NaOH      | 9         |
| NPS                                                                   |                                             |                                   |                                          |                                                     |               |           |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> /NiOOH                       | 0.625                                       | 0.62                              |                                          | $100 \text{ mW} \text{ cm}^{-2}$                    | 1 M NaOH      | 10        |
|                                                                       |                                             |                                   |                                          | AM 1.5 and                                          |               |           |
| α-                                                                    | 2.1 (1.53 V)                                | 0.95                              |                                          | UV filter, 100                                      | 0.1 M KOH     | 11        |
| Fe <sub>2</sub> O <sub>3</sub> /Co(II)/Co <sub>3</sub> O <sub>4</sub> | 112 (1100 1)                                |                                   |                                          | mW cm <sup>-2</sup>                                 | 012 111 1001  |           |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> @IrO <sub>2</sub> NPs        | ~3.1                                        | 0.8                               |                                          | KG3 filter,                                         | 1 M NaOH      | 12        |
|                                                                       |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             |               |           |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                              |                                             |                                   |                                          |                                                     |               |           |
| Nanowires@Co                                                          | 0.54                                        | 0.77                              |                                          | $100 \text{ mW} \text{ cm}^{-2}$                    | 1 M NaOH      | 13        |
| catalyst                                                              |                                             |                                   |                                          |                                                     |               |           |
| $SiO_2/\alpha$ -Fe <sub>2</sub> O <sub>3</sub> @Co                    | 2.7                                         | ~0.8                              |                                          | KG3 filter,                                         | 1 M NaOH      | 14        |
| catalyst                                                              |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             |               |           |
| Fe <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub>                      | 2.0                                         | 0.8                               | 0.098%                                   | AM 1.5 G,                                           | 1 M NaOH      | 15        |
| -                                                                     |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             |               |           |
| Fe-Pi/Fe <sub>2</sub> O <sub>3</sub>                                  | ~0.8                                        | 0.8                               |                                          | AIVI 1.5 G, $100 \text{ m}\text{W} \text{ cm}^{-2}$ | 1 M NaOH      | 16        |
|                                                                       |                                             |                                   |                                          | AM 1 5 G                                            |               |           |
| Sn-Fe <sub>2</sub> O <sub>3</sub> /CoPi                               | 0.60                                        | 0.65                              |                                          | 100 mW cm <sup>-2</sup>                             | 1M KOH        | 17        |
| /                                                                     |                                             |                                   |                                          | AM 1.5 G.                                           |               |           |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> /NiCeOx                      | ~0.62                                       | ~0.6                              |                                          | 100 mW cm <sup>-2</sup>                             | 1 M NaOH      | 18        |
| 3D NSP@α-                                                             | 3.05                                        | ~0.7                              |                                          | AM 1.5 G,                                           |               | 19        |
| Fe <sub>2</sub> O <sub>3</sub> @CoPi                                  |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             | I IVI NAUH    |           |
| Anodized Fe                                                           |                                             |                                   |                                          | AM 15 G                                             |               |           |
| foams@Co                                                              | 3.25                                        | ~0.63                             |                                          | $100 \text{ mW cm}^{-2}$                            | 1 M NaOH      | 20        |
| catalyst                                                              |                                             |                                   |                                          | 100                                                 |               |           |
| CoPi/TiO <sub>2</sub> -                                               | ~1.4                                        | ~0.68                             |                                          | AM 1.5 G,                                           | 1 M NaOH      | 21        |
| modified $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                     |                                             |                                   |                                          | 100 mW cm <sup>-2</sup>                             |               |           |
| C/Co <sub>3</sub> O <sub>4</sub> -Fe <sub>2</sub> O <sub>3</sub>      | 1.48                                        | 0.79                              | 0.2%                                     | AM 1.5 G,                                           | 1 M NaOH      | 22        |
|                                                                       |                                             |                                   |                                          |                                                     |               |           |
| FeOOH/Fe <sub>2</sub> O <sub>3</sub>                                  | 1.21                                        | 0.65                              |                                          | AIVI 1.5 G, $100 \text{ mW} \text{ cm}^{-2}$        | 1 M NaOH      | 23        |
| WN-a-                                                                 |                                             |                                   |                                          | AM 1 5 G                                            |               |           |
| Fe <sub>2</sub> O <sub>2</sub> @Co <sub>2</sub> O <sub>4</sub>        | 3.48                                        | ~0.62                             | 0.55%                                    | 100 mW cm <sup>-2</sup>                             | 1 M KOH       | This work |



Figure S10. Linear sweep voltammograms collected from WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> before and after annealing in Ar and from WN- $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> annealed in air and in Ar in 1 M KOH aqueous solution under light illumination.



Figure S11. Linear sweep voltammograms collected from  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> in 1 M KOH aqueous solution under chopped light illumination.



Figure S12. Photocurrent retention versus time curves of pristine  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> under light illumination at 1 V vs. RHE.



Figure S13. Linear sweep voltammograms collected from  $WN-\alpha$ -Fe<sub>2</sub>O<sub>3</sub>@Co<sub>3</sub>O<sub>4</sub> synthesized with different reactant concentrations in 1 M KOH aqueous solution under light illumination.

#### References

- [1] W. Yuan, J. Yuan, J. Xie, C. M. Li, ACS Appl. Mater. Interfaces, 2016, **8**, 6082.
- [2] Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, *Energy Environ. Sci.*, 2013, **6**, 347.
- [3] K. Gelderman, L. Lee, S. W. Donne, J. Chem. Educ., 2007, 84, 685.
- [4] C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, J. R. Morante, J. Phys. Chem. C, 2013, 117, 20517.
- [5] R. Xu, H. C. Zeng, J. Phys. Chem. B, 2003, 107, 12643.
- [6] L. Li, M. Liu, S. He, W. Chen, *Anal. Chem.*, 2014, **86**, 7996.
- [7] R. Chong, B. Wang, C. Su, D. Li, L. Mao, Z. Chang and L. Zhang, J. Mater. Chem. A., 2017, 5, 8583.
- [8] A. G. Tamirat, W.-N. Su, A. A. Dubale, C.-J. Pan, H.-M. Chen, D. W. Ayele, J.-F. Lee and B.-J. Hwang, *J. Power Sources*, 2015, 287, 119.
- [9] L. Xi, P. D. Tran, S. Y. Chiam, P. S. Bassi, W. F. Mak, H. K. Mulmudi, S. K. Batabyal, J. Barber, J. S. C. Loo and L. H. Wong, *J. Phys. Chem. C.*, 2012, **116**, 13884.
- [10] F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo and A. Naldoni, ACS Catalysis, 2015, 5, 5292.
- [11] S. C. Riha, B. M. Klahr, E. C. Tyo, S. Seifert, S. Vajda, M. J. Pellin, T. W. Hamann and A. B. F. Martinson, *ACS nano*, 2013, **7**, 2396.
- [12] T. S. David, C. Maurin, S. Kevin and G. Michael, *Angew. Chem. Int. Edit.*, 2010, **49**, 6405.
- [13] L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers and S. Jin, *Nano Lett.*, 2012, **12**, 724.
- [14] A. Kay, I. Cesar and M. Grätzel, J. Am. Chem. Soc., 2006, **128**, 15714.
- [15] B. Davide, C. Giorgio, G. Alberto, M. Chiara, W. M. E. A., K. Kimmo, S. Cinzia, T. Stuart, G. Yakup, R. Tero-Petri, B. Laura, B. Elza, V. T. Gustaaf, L. Helge and M. Sanjay, *Adv. Mater. Interfaces*, 2015, 2, 1500313.
- [16] Z. Hu, Z. Shen and J. C. Yu, *Chem. Mater.*, 2016, **28**, 564.
- [17] W. Jian, S. Jinzhan and G. Liejin, *Chem–Asian J.*, 2016, **11**, 2328.
- [18] H. Lim, J. Y. Kim, E. J. Evans, A. Rai, J.-H. Kim, B. R. Wygant and C. B. Mullins, ACS Appl. Mater. Interfaces, 2017, **9**, 30654.
- [19] Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang and Z. Fan, *Nano Lett.*, 2014, **14**, 2123.
- [20] K. J. Soo, N. Yoonsook, K. Jin, C. Hyelim, J. T. Hwa, A. Docheon, K. Jae-Yup, Y. Seung-Ho, P. Hyeji, Y. Jun-Ho, C. Wonyong, D. D. C., C. Heeman and S. Yung-Eun, *Angew. Chem. Int. Ed.*, 2017, 56, 6583.
- [21] M. G. Ahmed, I. E. Kretschmer, T. A. Kandiel, A. Y. Ahmed, F. A. Rashwan and D. W. Bahnemann, *ACS Appl. Mater. Interfaces*, 2015, **7**, 24053.
- [22] P. Zhang, T. Wang, X. Chang, L. Zhang and J. Gong, *Angew. Chem. Int. Edit.*, 2016, **55**, 5851.
- [23] K. J. Young, Y. D. Hyun, K. Kyoungwoong and L. J. Sung, Angew. Chem. Int. Ed., 2016, 55, 10854.