
Electronic Supplementary Information (ESI)

Eco-friendly synthesis of N,S co-doped hierarchical nanocarbon as highly efficient metal-free catalyst for reduction of nitroarenes

Sijie Liu,^a Liting Cui,^b Zhiyao Peng,^a Jingjing Wang,^a Yajing Hu,^a Ao Yu,^a Haining Wang,^{*b} Ping Peng,^{*a} Fang-Fang Li^{*a}

^a State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074

^b Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, China.

Figure S1. Chemical structure of the sulphonate-based anionic dye-methyl orange (MO). The chemical formula of MO is $C_{14}H_{14}N_3O_3SNa$. The negatively charged $(C_{14}H_{14}N_3O_3S)^{-1}$ can be intercalated into the interlayers of LDH as counter ions.

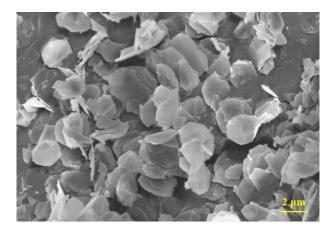


Figure S2. Low magnification SEM image of Mg-Al LDH.

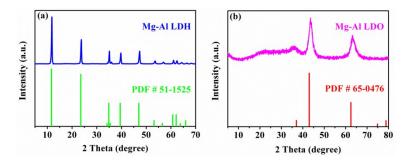


Figure S3. PXRD patterns of Mg-Al LDH (a) and Mg-Al LDO (b).

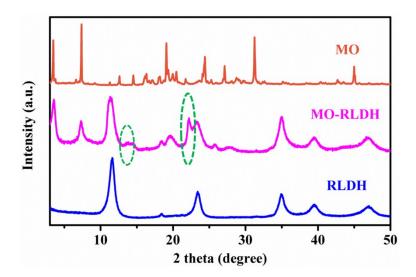


Figure S4. PXRD patterns of MO, RLDH and MO-RLDH.

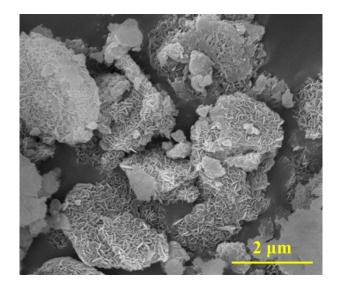


Figure S5. Low magnification SEM image of NSHC.

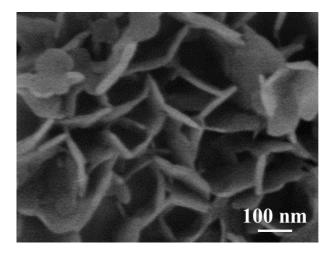


Figure S6. High magnification SEM image of NSHC.

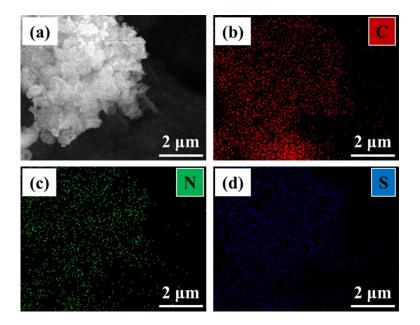


Figure S7. The energy dispersive X-ray spectroscopy (EDS) elemental mapping of NSHC.

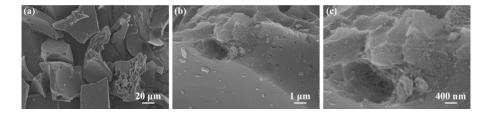
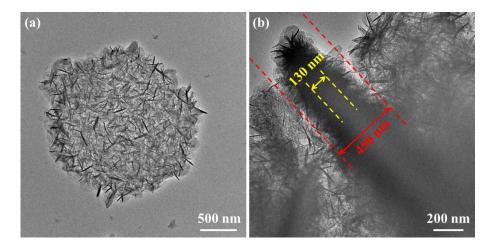
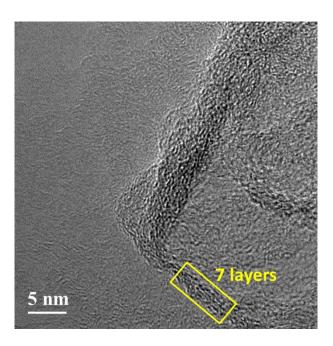
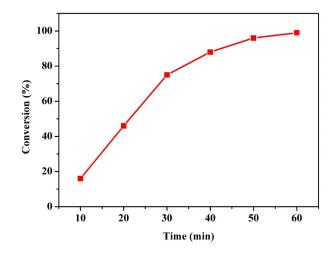
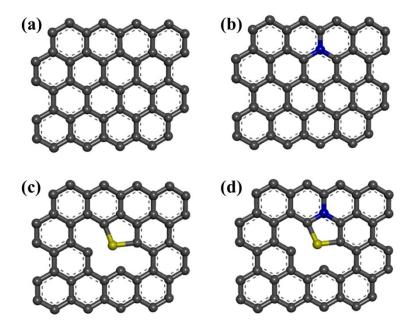



Figure S8. SEM images of NSC.

Figure S9. TEM images of NSHC. (a) TEM image observed from top view; (b) TEM image observed from side view.

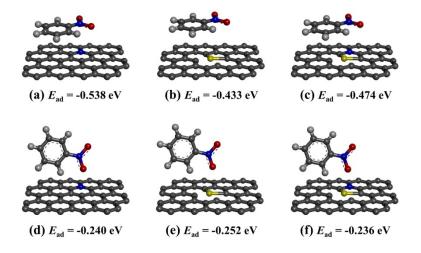

Figure S10. HRTEM image of the ultrathin subunit carbon nanosheets.

Figure S11. Time dependent conversion over NSHC for nitrobenzene reduction. Reaction conditions: 0.5 g nitrobenzene, 2 mL hydrazine hydrate (85 wt%), 1 mL 1-propanol, 10 mg NSHC, 100 °C.

Figure S12. Various graphene models for DFT calculation. (a) Pure graphene; (b) N-doped graphene; (c) S-doped graphene and (d) N,S co-doped graphene.

Figure S13. The adsorption energy (E_{ad}) of nitrobenzene on N-doped, S-doped and N,S-codoped graphene models. Both parallel adsorption and vertical adsorption were calculated.

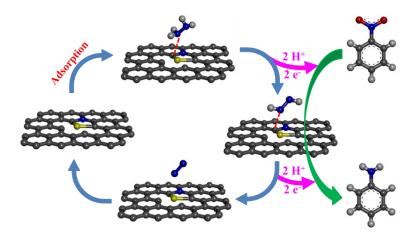


Figure S14. Proposed mechanism for the reduction of nitrobenzene by hydrazine over NSHC catalyst.

sample	C (at%)	O (at%)	N (at%)	S (at%)
NSHC	90.37	5.31	1.93	2.39
NSC	79.24	10.22	8.79	1.75
NHC	89.95	5.44	4.61	
SHC	87.95	8.76		3.29

Table S1. XPS analytic data of NSHC, NSC, NHC and SHC