Supporting Information for "Adaptive adhesion strategies of *Dictyostelium discoideum* - a force spectroscopy study"

Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff and Marco Tarantola

Figure S1 Water contact angle measurements, exemplary shown for the N-wafer A: with and B: without silanization (after piranha cleaning).

Table S1 Summary of the substrate properties of N- and T-wafer as well as the silanization. Advancing (adv) and receding (rec) contact angle of H₂O, as well as contact angle measurement based hysteresis ($\Delta \alpha$) (Piranha cleaned); complete wetting (CW). Surface energy and roughness were reported by Kreis¹ (Ethanol-cleaned). The isoelectric point (IEP) was reported by Loskill *et al.*² (Ethanol-cleaned)

Substrate	α_{adv}	α_{rec}	$\Delta \alpha$	γ^{tot} (mJ/m ²)	γ^{LW} (mJ/m ²)	γ^{AB} (mJ/m ²)	rms (nm)	IEP
N-SiO ₂	CW	CW		35 ± 4	32 ± 1	3 ± 3	0.17	3
T-SiO ₂	CW	CW		37 ± 3	32 ± 1	5 ± 3	0.19	3
OTS	$113\pm3^\circ$	$100\pm2^\circ$	13°	23 ± 1	23 ± 1	≤ 0.2	0.16	≤ 4

Figure S2 A: Tether force and B: amount of tethers from SCFS of AX3 WT cells on a glass surface during starvation-induced development (switch from medium to PB-buffer at t = 0 h). 5 μ M Latrunculin A (LatA) treatment is shown as reference.

Table S2 Parameters used for figure 4B

Cells	w (mN/m)	<i>T</i> ₀ (mN/m)	$R_2 \ (\mu m)$	$K_{\rm A}~({\rm mN/m})$
AX3	0.11	0.12	3.5	50
AX3+ α M	0.06	3	3.5	100
AX3+sadA0	0.09	0.12	3.5	85
AX3+sadA0+ α M	0.022	3	3.5	85

Figure S3 Computational force distance curves illustrating the impact of the mechanics of the cellular cortex by varying the area compressibility modulus K_{A} .

Figure S4 Adhesion work of wildtype AX3 modifications on T-OTS. W_{adh} decreased from AX3 to α -Mannosidase-treated AX3+ by a factor of 2.5, from AX3 to AX3-*sadA0* nearly by a factor of 5. The α M-treatment reduces W_{adh} of AX3-*sadA0* further by a factor of 2.5.

Figure S5 Adhesion work of AX3 in PB (red) in comparison to an ionic strenght of mono- or divalent ions on a non-silanized T-wafer (*T-SiO*₂). For the monovalent ion K^+ (blue), there is only a slight decrease of W_{adh} , which is much stronger for the divalent ion Mg^{2+} (green).

Figure S6 Adhesion work of WT AX2 on model substrates. W_{adh} decreased from N-SiO₂ to T-SiO₂ by a factor of 2.5 and by a factor of 1.7 from N-OTS to T-OTS. Silanization also reduces adhesion work roughly by a factor of 2.

Table S3 Overview of SCFS for all cells, substrates and conditions used in this study. Medians of maximal adhesion force and adhesion work are given. As a reference the results for AX2 cells on glass by Leonhardt *et al.*³ and for AX3 cells and Latrunculin A (LatA) treated AX3 cells on glass by Tarantola *et al.*⁴ are shown.

Cells	Substrate	Conditions	F _{max}	Wadh
			(nN)	(fJ)
AX2	Glass	PB	7.7 ³	16.5 ³
AX3	Glass	PB	7.6 ⁴	27.3 ⁴
AX2	$N-SiO_2$	PB	5.4	10.0
AX2	$T-SiO_2$	PB	3.7	5.9
AX2	$T-SiO_2$	PB+5 mM KCl	3.5	3.9
AX2	$T-SiO_2$	PB+20 mM KCl	2.1	1.0
AX2	$T-SiO_2$	PB+5 mM MgCl ₂	1.9	5.0
AX2	$T-SiO_2$	PB+20 mM MgCl ₂	1.8	1.0
AX2	N-OTS	PB	3.1	5.5
AX2	T-OTS	PB	2.1	2.2
AX3	T-OTS	PB	2.5	3.8
$AX3 + \alpha M$	T-OTS	PB	1.4	1.5
AX3+sadA0	T-OTS	PB	0.7	0.8
$AX3 + sadA0 + \alpha M$	T-OTS	PB	0.5	0.3
AX3+LatA	Glass	PB	0.16 ⁴	0.2^{4}

Notes and references

- [1] C. T. Kreis, *PhD thesis*, Universität Göttingen, 2017.
- [2] P. Loskill, H. Hahl, N. Thewes, C. T. Kreis, M. Bischoff, M. Herrmann and K. Jacobs, Langmuir, 2012, 28, 7242–7248.
- [3] H. Leonhardt, M. Gerhardt, N. Höppner, K. Krüger, M. Tarantola and C. Beta, *Physical Review E*, 2016, 93, 012414(8).
- [4] M. Tarantola, A. Bae, D. Fuller, E. Bodenschatz, W. J. Rappel and W. F. Loomis, *Plos One*, 2014, 9, e106574.