Experiment

Chemicals

Cobaltous nitrate hexahydrate (Co(NO₃)₂·6H₂O) was purchased from Sigma-Aldrich Corp. Nafion (D520, 5 wt.%) was purchased from DuPont Corp. Polyvinyl pyrrolidone (PVP, K30), sodium chloride (NaCl), Potassium hydroxide (KOH), and ethanol (C₂H₅OH) were purchased from Shanghai Chemical Corp. Commercial platinum/carbon (Pt/C) catalyst and RuO2 (99.9%) catalyst were purchased from JM. All these chemicals were used as purchased without any purification.

Electrochemical calculation

At various potentials, the electron transfer number (n) per oxygen molecule involved during ORR was computed based on the following Koutecky-Levich (K-L) equation:

$$J^{-1} = J_L^{-1} + J_K^{-1} = B^{-1}\omega^{-1/2} + J_K^{-1}$$
[1]

where J represents the measured current, J_k represents the kinetic-limiting current, and ω expresses the electrode rotation rate. A series of current values (J) were collected by changing the electrode rotation rate. The linear graph can then be obtained by plotting the relationship between J and ω . The electron transfer number (n) of per oxygen molecule involved could be computed by using the slope (B) of the linear graph and the following relationship:

$$B = 0.62 n F C_{O_2} D_{O_2}^{2/3} v^{-1/6}$$
[2]

where n represents the electron transfer number of per oxygen molecule in the ORR process, F expresses the Faradaic constant (96485 C mol⁻¹), C_{O2} is the concentration of O_2 in 0.1 M KOH (1.2×10^{-6} mol cm⁻³), D_{O2} is the diffusion coefficient of O_2 in 0.1 M KOH (1.90×10^{-5} cm² s⁻¹) and v represents the kinematic viscosity of 0.1 M KOH (0.01 cm² s⁻¹).

Fig. S1 The Co spectrum of Co_3O_4/C .

Fig. S2 The C spectrum of Co_9S_8/C .

Fig. S3 Linear sweep voltammetry curves of the Pt/C catalyst before and after 5000 cycles.

Fig. S4. the XRD (a) and SEM (b) pattern of the Co9S8/C after cycling testing

Fig. S5 Linear sweep voltammetry curves of the RuO₂ catalyst before and after 1000 cycles.

Smaples	Co_9S_8	Co ₃ O ₄
E onset/V	0.892	0.780
E _{1/2} /V	0.778	0.652

Table. S1 The E $_{onset}$ and $E_{1/2}$ of Co_9S_8/C and Co_3O_4/C .

Table. S2 The electrochemical performance of recently reported no-noble metal materials for the ORR and OER in an alkaline solution.

Catalysts	ORR		OER		
	E _{onset} (V)	E _{1/2} (V)	E _{onset} (V)	Overpotential at 10 mA • cm ⁻² (V)	Refs.
C0 ₉ S ₈ /C	0.892	0.778	1.500	0.434	This
					work
Co/C sphere	0.962		1.720		S 1
S,N-Fe/N/C-CNT	0.850			0.370	S2
N-CCs		0.780		0.390	S 3
NC/Co-NGC	0.920	0.820	1.640		S1
DSNC					54
Co@NCNT HMS		0.871	1.552		S5
SWCNT@NPC		0.850		0.388	S 6
egg-CMS	0.840	0.690	1.510		S 7
Co@Co ₃ O ₄ /NC		0.800	1.650		S 8
P-Doped CoSe ₂		0.870		0.230	S 9

Reference

- S1. J.-C. Li, P.-X. Hou, M. Cheng, C. Liu, H.-M. Cheng and M. Shao, *Carbon*, 2018, **139**, 156-163.
- S2. S. Cai, Z. Meng, H. Tang, Y. Wang and P. Tsiakaras, Appl. Catal. B-Environ., 2017, 217, 477-484.
- S3. A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, Angew. *Chem. Int. Edit.*, 2016, 55, 4087-4091.
- S4. Y. Li, J. Gao, F. Zhang, Q. Qian, Y. Liu and G. Zhang, J. Mater. Chem.A, 2018, 6, 15523-15529.
- S5. P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu and Y. Xie, AAngew. *Chem. Int. Edit.*, 2017, 56, 610-614.
- S6. N. Jia, Q. Weng, Y. Shi, X. Shi, X. Chen, P. Chen, Z. An and Y. Chen, Nano Res., 2018, 11, 1905-1916.
- S7. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C. Y. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.*, 2017, 29, 31.
- S8. H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang and G. Zheng, *Adv. Energy Mater.*, 2016, 6, 1600794.
- S9. H. Zhang, T. Wang, A. Sumboja, W. Zang, J. Xie, D. Gao, S. J. Pennycook, Z. Liu, C. Guan and J. Wang, *Adv. Funct. Mater.*, 2018, 1804846