SUPPORTING INFORMATION

Photovoltaic Effect in Few-Layer ReS₂/WSe₂ Heterostructure

Chulho Park,^a Ngoc Thanh Duong,^{a,b} Seungho Bang,^{a,b} Duc Anh Nguyen,^a Hye Min Oh*^a and

Mun Seok Jeong*^{*a,b*}

^aDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

^bCenter for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS),

Sungkyunkwan University, Suwon 16419, Republic of Korea

*Email: <u>mjeong@skku.edu</u>, <u>ohmin@skku.edu</u>

Figure S1. AFM images of the (a) few-layer ReS_2 transistor and (b) few-layer WSe_2 transistor. The thicknesses of few-layer ReS_2 and WSe_2 transistors are approximately 3.3 and 3.5 nm, respectively.

Figure S2. Gate dependence of the few-layer ReS₂/WSe₂ heterostructure. (a) Log I_{ds} -V_{ds} curve depending on the gate-bias, in the range of -50 V to 50 V. (b) I_{ds} -V_{ds} curve in the p-n junction regime (-60 V < V_{gs} < -30 V). At V_{gs} = -50 V, the few-layer ReS₂/WSe₂ heterostructure shows the highest rectification behavior.

Figure S3. Electrical properties of the few-layer ReS₂/WSe₂ heterostructure. (a) Log I_{ds} -log V_{ds} curve of the forward bias in the p-n junction regime ($V_{gs} = -50$ to -30 V) and in the n-n junction regime ($V_{gs} = -25$ to 50 V). (c) Log I_{ds} -log V_{ds} curve of the reverse bias depending on the gate bias. In the forward bias of the p-n junction regime, the few-layer ReS₂/WSe₂ heterostructure has a rapid current increase section only.

Figure S4. Optoelectronic properties of the few-layer $\text{ReS}_2/\text{WSe}_2$ heterostructure. (a) Short-circuit current (I_{sc}) and (b) open-circuit voltage (V_{oc}) with respect to the incident power of the 405-nm laser. I_{sc} exhibits a linear increase, and V_{oc} is saturated with incident power, as I_{sc} and V_{oc} are related to the illumination intensity and bandgap, respectively.

Figure S5. (a) Photovoltaic effect of the few-layer $ReS_2/monolayer WSe_2$ heterostructure. (b) Electrical power (P_{el}) with an incident laser power (P_{in}). (c) Fill factor with respect to P_{in} . All of measurement were conducted at -50 V gate bias with 405-nm laser. Although both layers have direct band gap, it exhibits low fill factor compared with few-layer ReS_2/WSe_2 heterostructure. Because this structure has very low short circuit current. Therefore, we assume that monolayer has not enough absorbing layer due to ultrathin thickness.