Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Enhancing EMI shielding of natural rubber-based supercritical CO₂ foams by exploiting porous morphology and CNT segregated network

Yanhu Zhan, ^{a,b,} Maria Oliviero, ^{a,} Jian Wang, ^c Andrea Sorrentino, ^a Giovanna G. Buonocore, ^a Luigi Sorrentino, ^a Marino Lavorgna, *a

Hesheng Xia ^c and Salvatore Iannace ^d

- a. Institute of Polymers, Composites and Biomaterials, National Research Council, P.le Fermi, 1-80055 Portici, NA, Italy. E-mail address: mlavorgn@unina.it
- b. School of Materials Science and Engineering, Liaocheng University,
 Liaocheng 252000, China
- c. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- d. Institute for Macromolecular Studies (ISMAC-CNR) National Research Council, Milano 20133, Italy.

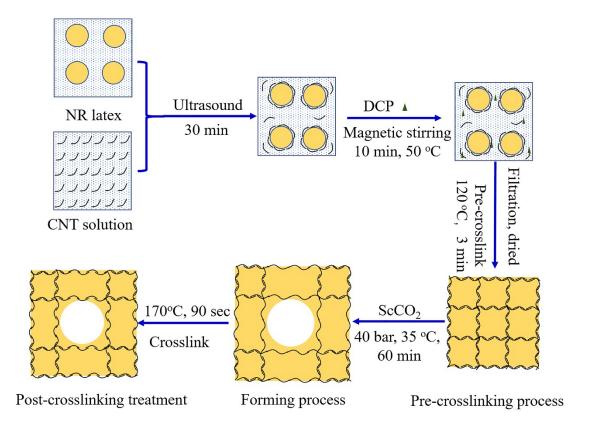


Fig. S1. The preparation of F-NR/CNTs foams by multi-steps method

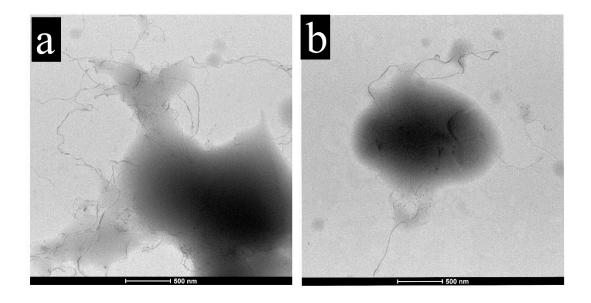


Fig. S2. TEM images of NR latex particles coated with 3.31wt% CNTs

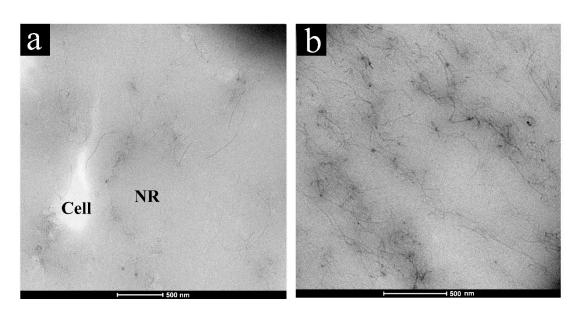


Fig. S3. TEM images of F-NR/CNT $_{1.68}$ (a) and F-NR/CNT $_{6.40}$ (b)

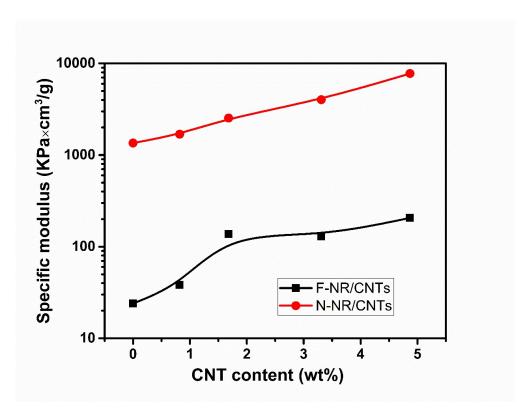


Fig. S4. Specific modulus of N-NR/CNTs and F-NR/CNTs composites

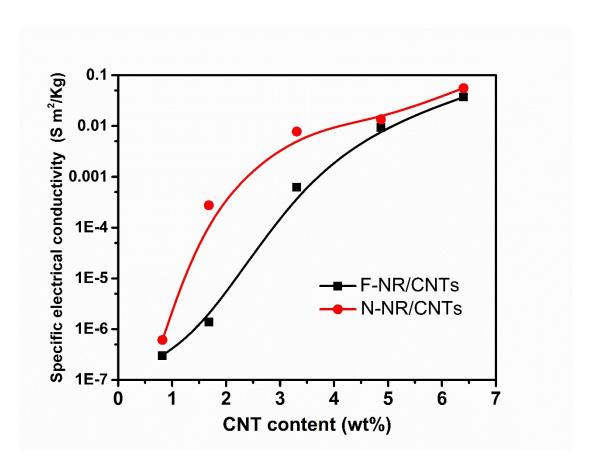


Fig. S5. Specific electrical conductivity of N-NR/CNTs and F-NR/CNTs composites

Table S1: Mechanical properties of F-NR/CNTs composite foams

Sample	Stress (KPa)			Slope (KPa)	
	10%	20%	30%	10~20%	32.5~42.5%
NR foam	2.64	6.80	16.09	41.5	205
$F-NR/CNT_{0.82}$	3.40	10.94	22.79	75.9	199
F-NR/CNT _{1.68}	12.90	39.75	80.06	269	-
F-NR/CNT _{3.31}	21.07	65.45	110.42	450	658
F-NR/CNT _{4.87}	29.83	77.46	144.50	486	1048

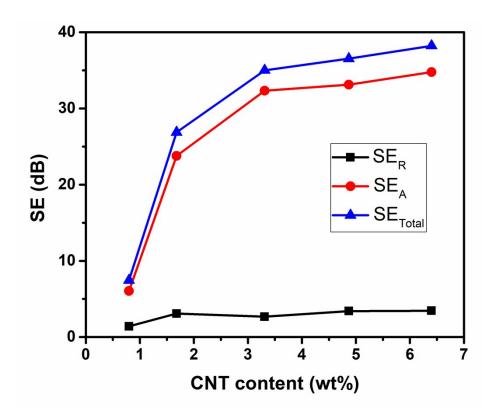


Fig.S6 Shielding by reflection, absorption, and total shielding of N-NR/CNTs composite at the frequency of 10.3 GHz

Fig. S6 shows SE_A , SE_R and SE_{Total} of N-NR/CNT composites. The values of SE_{Total} and SE_A noticeably increase with the CNTs content, while SE_R changes only slightly over the investigated CNT content range. This confirms that absorption of electromagnetic waves plays a major role to EMI SE of N-NR/CNT rather than reflection mechanism.