Supplementary Materials

High-Performance Solar-Blind SnO₂ Nanowire Photodetectors Assembled using Optical Tweezers

Jianwei Yan,^{1,2} Yang Chen,¹ Xiaowu Wang,¹ Ying Fu,¹ Juxiang Wang,¹ Jia Sun, ¹* Guozhang Dai,^{2*} Shaohua Tao,^{1*} and Yongli Gao, ^{1,3}

¹Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China

² Department of Applied Physics, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China

³Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

J. Yan and Y. Chen contributed equally this work.

Corresponding Author:

J. Sun (*E-mail: jiasun@csu.edu.cn); G. Dai (*E-mail: gzdai2011@csu.edu.cn); S. Tao (*E-mail: eshtao@csu.edu.cn).

Figure S1. Low-resolution SEM image of SnO_2 nanowires

Figure S2. The fabrication step of the electrode patterning by photolithography.

Figure S3. The SEM image of the SnO_2 nanowire photodetector assembled by optical tweezers.

Figure S4. The typical I-V curve as a function of illuminated light wavelength.

Figure S5. The typical I-V curve as a function of illuminated light power density.