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Text S1. Computational Details

We have performed spin-polarized density functional theory (DFT) calculations for all our structures as 

implemented in the Vienna Ab initio Simulation Package (VASP).1 All our calculations have been carried 

out within the Perdew-Burke-Ernzerhof (PBE) functional using generalized gradient approximation 

(GGA) 2-3 to describe correctly the electron–electron exchange and correlation energies of delocalized s 

and p electrons. Projected augmented wave (PAW) method 4 is employed using a plane wave cut–off  

energy of 320 eV to treat interactions between ion cores and valence electrons.  Since the van der Waals 

interactions play a very decisive role for the layered systems, we have adopted van der Waals corrected 

density functional theory (DFT-D3) proposed by Grimme to overcome the deficiencies of DFT in treating 

dispersion interactions and correcting potential energy and interatomic forces.5 MgCl2 monolayer and 

defect induced various phases of MgCl2 structures are modeled using (3×3×1) hexagonal supercell 

containing 27 atoms. We have used gamma-centered k-point grid of 9 × 9 × 1 is used to sample the first 

Brillouin zone of MgCl2 monolayer for geometry optimization and 15×15×1 is used for spin-polarized 
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electronic properties (Density of States) calculations.  A 20 Å vacuum is employed along the z-direction 

for avoiding interactions between their periodic images.  We have accomplished self-consistency with the 

convergence tolerance set to 10−6 eV and 10−3 eV.Å-1 for total energy and force calculations respectively.

We have done bader charge analysis6-8 using the Henkelman programme9 with a near-grid algorithm 

refine-edge method to comprehend the charge transfer process. Moreover, we have calculated defect 

formation ( ) energies under two different experimental conditions (Mg-rich environment and Cl-rich 𝐸𝐹

environment) to estimate the stability of various phases of MgCl2 systems. Defect formation energy under 

Mg-rich environment can be calculated from the following equation10-11

                           (1) 𝐸𝐹 =  𝐸𝑑𝑒𝑓 ‒ 𝑝ℎ𝑎𝑠𝑒 ‒ (𝐸𝑀𝑔𝐶𝑙2 ‒ 𝑁 × µ𝑀𝑔 ‒ 𝑚𝑎𝑥)

Where  is total energy of the Mg vacancy induced phases of MgCl2 monolayer,  is the 𝐸𝑑𝑒𝑓 ‒ 𝑝ℎ𝑎𝑠𝑒 𝐸𝑀𝑔𝐶𝑙2

total energy of pure MgCl2 system,   is the chemical potential of Mg under Mg-rich environment µ𝑀𝑔 ‒ 𝑚𝑎𝑥

and  is the number vacancy created in the MgCl2 supercell. Under Mg-rich environment, = 𝑁 µ𝑀𝑔 ‒ 𝑚𝑎𝑥 

 , where is the single atom energy of Mg atom from its respective bulk structure.12   𝐸𝑀𝑔(𝐵𝑢𝑙𝑘) 𝐸𝑀𝑔(𝐵𝑢𝑙𝑘) 

Defect formation energy under Cl-rich environment can be calculated from the following equation 10-11

                           (2)𝐸𝐹 =  𝐸𝑑𝑒𝑓 ‒ 𝑝ℎ𝑎𝑠𝑒 ‒ (𝐸𝑀𝑔𝐶𝑙2 ‒ 𝑁 × µ𝑀𝑔 ‒ 𝑚𝑖𝑛)

Where   is the chemical potential of Mg under Cl-rich environment which can be calculated as µ𝑀𝑔 ‒ 𝑚𝑖𝑛

                                  (3)µ𝑀𝑔 ‒ 𝑚𝑖𝑛 =  (𝐸𝑀𝑔𝐶𝑙2 ‒ 𝑢𝑛𝑖𝑡 ‒ 2 × µ𝐶𝑙 ‒ 𝑚𝑎𝑥)

Here,  is the total energy of the MgCl2 unit cell containing one Mg and two Cl atoms and 𝐸𝑀𝑔𝐶𝑙2 ‒ 𝑢𝑛𝑖𝑡

  is the chemical potential of Cl, which is single Cl atom energy from gaseous phase.µ𝐶𝑙 ‒ 𝑚𝑎𝑥

Furthermore, to predict the magnetic ground state of in defect induced phases of MgCl2 monolayer, we 

have calculated the exchange energy10 ( ) per unit cell and magnetic anisotropic energy10 of 𝐸𝑒𝑥

Mg0.89δ0.11Cl2. The exchange energy per supercell ( ) is calculated using the following equation where 𝐸𝑒𝑥

 and  denotes the energies of ferromagnetic and antiferromagnetic states.   𝐸𝐹𝑀 𝐸𝐴𝐹𝑀
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                                                (4)𝐸𝑒𝑥 =  𝐸𝐴𝐹𝑀 ‒ 𝐸𝐹𝑀

Similarly, magnetic anisotropic energy (MAE)13 per unitcell is calculated incorporating spin-orbit 

coupling (SOC) effect using the following equation where  is the energy of the system (along hard 𝐸𝐻𝐴

axis) with application of magnetic field along magnetizing direction (100), (010), (110), (111) and (001). 

 is the energy of the system in present of a magnetic easy axis, which is an energetically favorable 𝐸𝐸𝐴 

direction for spontaneous magnetization. We have also tried two out of plane direction (001) and (111) 

magnetizing direction. 

                                              (5)𝑀𝐴𝐸 =  𝐸𝐻𝐴 ‒ 𝐸𝐸𝐴 

The spin density distribution (SDD)14 is plotted to understand the nature of electron spin density on the 

unpaired electron in Mg vacancy induced phases of MgCl2 monolayer.  The SDD is calculated using the 

following equation  

                                               (6)𝜌𝑆𝐷 =  𝜌𝑢𝑝 ‒ 𝜌𝑑𝑜𝑤𝑛

Here, and  are the up and down electron spin density, respectively. In the SD, the wave functions 𝜌𝑢𝑝 𝜌𝑑𝑜𝑤𝑛

for different lobes are indicated by yellow colors. The direct mapping of the electron spin density is 

measured by the neutron diffraction in electron spin resonance (ESR) spectroscopy.10,15  

Table S1: Summary of formation energy/vacancy ( ) under Mg-rich and Cl-rich environments, 𝐸𝐹

magnetic moments/vacancy (µB), nature of the material and spin-up band gap (eV) for with 
different Mg-vacancy concentrations.

Formation energy 
(eV/Vacancy)

Mg Vacancy in 
MgCl2

Under Mg-
rich 

environment

Under Cl-
rich 

environment

Magnetic 
moment 

/vacancy(µB)

Nature Spin-Up 
Band 

Gap (eV)

Half-
Metallic 

Gap 
(eV)

Mg0.89δ0.11Cl2 7.99 2.16 2.00 Half-
Metallic

6.135 0.242

Mg0.78δ0.22Cl2 7.96 2.13 2.00 Half-
Metallic

6.301 0.157



5

Mg0.67δ0.33Cl2 7.89 2.05 2.00 Half-
Metallic

6.431 0.065

Figure S1:  Spin density distribution (top/side view) [isosurface value 0.0046 e Å-3] and partial 
density of states (PDOS) plot of Mg and Cl atoms in Mg0.89δ0.11Cl2 , Mg0.78δ0.22Cl2, and Mg0.67δ0.33Cl2 

systems.  

Table S2: Bond distance and Bader charge analysis of pure MgCl2, Mg0.67δ0.33Cl2 (MgCl3) and 
Mg0.89δ0.11Cl2.

System Bond-distance 
(Å)

Net effective charge

MgCl2

Mg-Cl ~ 2.52 Å Mg ~ +1.66, Cl ~ -0.83
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Mg0.67δ0.33Cl2

(MgCl3)

Mg-Cl ~ 2.49 Å Mg ~ +1.65 , Cl ~ -0.55

Mg0.89δ0.11Cl2

Mg-Cl ~ 2.47 Å
(Cl5, Cl8, Cl9, Cl13, 
Cl14, Cl17)

Mg-Cl ~ 2.51 Å

Mg ~ +1.66
Cl ~ -0.58 
(Cl5, Cl8, Cl9, Cl13, Cl14, 
Cl17)
Cl ~ -0.82 

Text S2: Mean Field Theory (MFT)

We have taken the MFT approach to calculate the Curie temperature for the two dimensional 

Mg0.89δ0.11Cl2 system. This method has been previously used by Li et al.16 for the Curie temperature 

calculation for Mn-phthalocyanine (MnPc) system. The main idea behind MFT method is to replace all 

interactions to any one body with an average or effective interaction.16 It reduces any multi-body problem 

into an effective one-body problem. The detailed partition function can be written as follows,

                             (7)
𝑍 = ∑

𝑚 =‒ 𝑀, ‒ 𝑀 + 2,  …….. 𝑀 ‒ 2,𝑀

𝑒
𝛾𝐽𝑚 < 𝑀 > /𝐾𝐵𝑇

Here, the “J” is the exchange parameter, “ ” is the coordination number, “m” is the ensemble average 𝛾

magnetic moment, and “M” is the calculated magnetic moment of Mg-B3 unit. 

Thus the average spin of each magnet becomes,

                    (8)
𝑍 =

1
𝑍 ∑

𝑚 =‒ 𝑀, ‒ 𝑀 + 2,  …….. 𝑀 ‒ 2,𝑀

𝑚 × 𝑒
𝛾𝐽𝑚 < 𝑀 > /𝐾𝐵𝑇

Now, we assume that  
𝑃 =

𝛾𝐽
𝐾𝐵𝑇

The above equation can be easily deducible when the parameter ‘P’ varies along with the
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static solution <m>. At the critical point,

                                                                              (9)
𝑃𝑐 = 𝑃 =

𝛾𝐽
𝐾𝐵𝑇

At this critical point, the phase transition of the system between ferromagnetic to paramagnetic occurs. 

This critical point is known as Curie temperature.

Text S3: Monte Carlo (MC) Simulation 

Monte Carlo simulations involve generating a subset of configurations or samples, chosen using a random 

algorithm from a configuration space, according to a probability distribution or weight function. 

Observables are then computed as averages over the samples. 17 One sample or configuration of the 

magnet is a particular assignment of spin values, say

               (10)𝑆1 =+ 1; 𝑆2 =‒ 1; 𝑆3 =+ 1;…………………………………………….. 𝑆𝑁𝑠 =+ 1

in which each spin is set “up” or “down”. According to statistical mechanics, the average value of an 

observable is got by weighting each configuration with the Boltzmann factor. For example, the average 

magnetization at some fixed temperature T is given by,

                 (11)

〈𝑀〉 =

∑
𝑐𝑜𝑛𝑓𝑖𝑔

𝑀𝑒
‒ 𝐸

𝐾𝐵𝑇

∑
𝑐𝑜𝑛𝑓𝑖𝑔

𝑒
‒ 𝐸

𝐾𝐵𝑇

Table S3: Summary of magnetic anisotropy energies in μeV/vacancy and the easy axis for 
Mg0.89δ0.11Cl2

Mg0.89δ0.11Cl2 Easy Axis 

(100)

(001)-(100) (010)-(100) (110)-(100) (111)-(100)

0 452.84 μeV 17.59 μeV 21.01 μeV 160.48 μeV
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Figure S2: (a)-(d) Spin density distribution and TDOS plot of Mg0.89δ0.11Cl2 under the 
application of biaxial tensile strain from 1% to 4% along with magnified spin-polarised TDOS 
around the Fermi showing half-metallic gap [Δ, in the inset figure]. 
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Figure S3: (a)-(d) Spin density distribution and TDOS plot of Mg0.89δ0.11Cl2 under the 
application of uniaxial tensile strain from 1% to 4% along with magnified spin-polarised TDOS 
around the Fermi showing half-metallic gap [Δ, in the inset figure]. 
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Figure S4: (a)-(d) Spin density distribution and TDOS plot of Mg0.89δ0.11Cl2 under the 
application of uniaxial compressive strain from 1% to 4% along with magnified spin-polarised 
TDOS around the Fermi showing half-metallic gap [Δ, in the inset figure].
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Figure S5: (a)-(d) Spin density distribution and TDOS plot of Mg0.89δ0.11Cl2 under the 
application of biaxial compressive strain from 1% to 4% along with magnified spin-polarized TDOS 
around the Fermi showing half-metallic gap [Δ, in the inset figure].

Figure S6: (a)-(e) Spin density distribution and TDOS plot of Mg0.89δ0.11Cl2 under the 
application of transverse electric field ranging from 0.0 to 1.0 VÅ-1.
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Figure S7: Optimized structure and spin-polarized density of states of Mg0.96δ0.04Cl2 and 
Mg0.92δ0.08Cl2 systems.
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