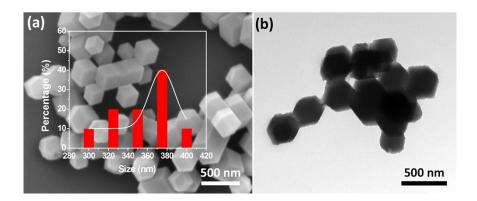
Supporting Information


Oxygen Vacancy Enriched Hollow Cobaltosic Oxide Frames with Ultrathin Walls for Efficient Energy Storage and Biosensing

Li Hua,^a Zengyu Hui,^a Yue Sun,^a Xi Zhao,^a Hai Xu,^a Yujiao Gong,^a Ruyi Chen,^a Chenyang Yu,^a Jinyuan Zhou,^c Gengzhi Sun*^a and Wei Huang^{ab}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China. E-mail: iamgzsun@njtech.edu.cn

^bShaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China.

^cSchool of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.

Fig. S1 Typical SEM (a) and TEM (b) images of Co-MOF (ZIF-67) rhombic dodecahedron. Inset in (a) is the size distribution of ZIF-67.

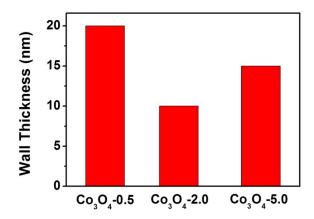
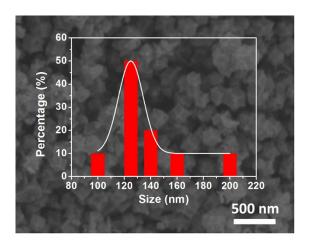
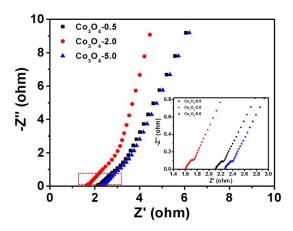
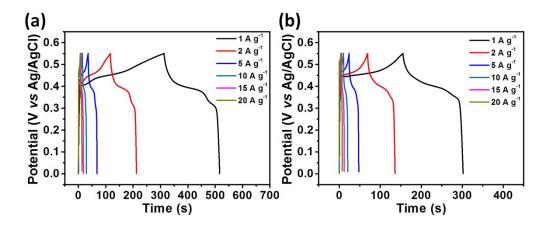
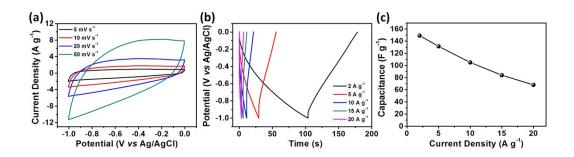



Fig. S2 The wall thickness of Co_3O_4 -0.5, Co_3O_4 -2.0 and Co_3O_4 -5.0.

Fig. S3 Typical SEM image of Co_3O_4 -10.0 obtained by calcination of ZIF-67 in air at 300 °C with the ramping rate of 10.0 °C min⁻¹. Inset is the size distribution of Co_3O_4 -10.0.

 $\textbf{Table S1} \ \text{Summary of O 1s XPS spectra of } Co_3O_4\text{-}0.5, \ Co_3O_4\text{-}2.0 \ \text{and} \ Co_3O_4\text{-}5.0.$

	Co ₃ O ₄	O_{L}	Ov
	samples	(Co-O)	(vacancy)
Co ₃ O ₄ -0.5	binding energy (eV)	530.0	530.9
	relative percentage (%)	68.0	32.0
Co_3O_4 -2.0	binding energy (eV)	530.2	531.0
	relative percentage (%)	56.2	43.8
$Co_3O_4-5.0$	binding energy (eV)	530.0	530.9
	relative percentage (%)	76.8	23.2

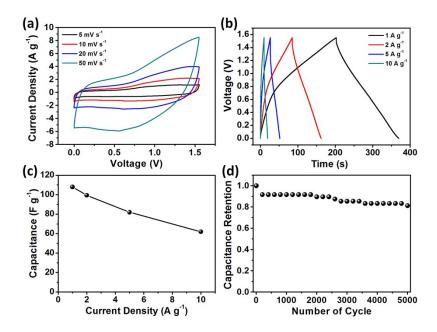

Fig. S4 Nyquist plots of the EIS of Co_3O_4 -0.5, Co_3O_4 -2.0 and Co_3O_4 -5.0.

Fig. S5 Charge-discharge curves of (a) Co_3O_4 -0.5 and (b) Co_3O_4 -5.0 measured at different current densities.

Fig. S6 (a) Cyclic voltammogram curves of holey graphene at different scan rates ranging from 5 to 50 mV s⁻¹. (b) Charge-discharge curves and (c) the corresponding specific capacitance of holey graphene measured at different current densities.

Fig. S7 (a) The CV curves of the hybrid supercapacitors made of $\text{Co}_3\text{O}_4\text{-}2.0$ and holey graphene as the positive and negative respectively at different scan rates ranging from 5 to 50 mV s⁻¹. (b) Charge–discharge curves and (c) the corresponding specific capacitance of the hybrid supercapacitor at different current densities. (d) Cycling performance of the hybrid supercapacitor at the current density of 10 A g⁻¹.