Uniform P Doped Co-Ni-S Nanostructures for Asymmetric Supercapacitors with Ultra-high Energy Densities

Yao Meng[†], Pengxiao Sun[§], Weidong He[§], Bing Teng^{*†}, Xijin Xu^{*§}

P. X. Sun, W. D. He, Prof. X. J. Xu

[§]School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China

Y. Meng, Prof. B. Teng

[†]School College of Physics, Qingdao University, Qingdao 266071, China

E-mails: sps_xuxj@ujn.edu.cn (X.J. Xu); 5108tb@163.com (B.Teng)

Keywords: P doped Co-Ni-S, Sulfurization, Asymmetric supercapacitors

Figure S1. Photographs of the as-prepared different electrode materials.

Figure S2. EDAX spectrum of P in Co-Ni-S nanosheets.

Figure S3

Figure S3. N₂ adsorption–desorption analysis of (a) Co-Ni-DHs (b) Co-Ni-S and (c) P doped Co-Ni-S. Insets show the corresponding pore size distribution profiles, (d) the surface area contrast of as-prepared materials.

Figure S4. CV curves and GCD curves of the typical Co-Ni-DH (a-b) and Co-Ni-S (c-d).

Figure S5. EIS in the frequency of 0.01Hz~100KHz and the equivalent circuit model for the EIS plot of Ni-Co-S and P doped Co-Ni-S.

Figure S6. The cycling performance of P doped Co-Ni-S electrode at a constant current density of 5 A g⁻¹.

Figure S7. (a) the CV measurements of AC electrode at different scan rates from 5 to 50 mV s⁻¹; (b) GCD curves of AC electrode at the current densities of 1, 2, 3, 5, 8 and 10 A g⁻¹; (c) specific capacitance of AC electrode.

Table S1.

Materials	Electrolyte concentration	Current density	S _c / f g ⁻¹	Ref
Cu _{1-x} Ni _x S	2 M KOH	2 A g ⁻¹	2672 F g ⁻¹	1
SP-AG	1 М КОН	1 A g ⁻¹	381 F g ⁻¹	14
Ni ₃ S ₂ /CoNi ₂ S ₄ /NF	6 M KOH	2 A g ⁻¹	2435 F g ⁻¹	9
CuCo ₂ O ₄ @Ni _{0.5} Co _{0.5} (OH) ₂	3 М КОН	1 A g ⁻¹	295.6 F g ⁻¹	8
NiCo ₂ O ₄ @Ni ₃ S ₂	2 M KOH	1 A g ⁻¹	1716 F g ⁻¹	42
NiCo ₂ S ₄	6 M KOH	2.5 A g ⁻¹	2141.9 F g ⁻¹	23
Ni-Co sulfide NWAs	1 М КОН	2.5 A g ⁻¹	2415 F g ⁻¹	40
NiCo ₂ S ₄ ball-in-ball	6 M KOH	1 A g ⁻¹	1036 F g ⁻¹	54
Ni-Co sulfide NSs	6 M KOH	2 A g ⁻¹	1304 F g ⁻¹	15
NiCo ₂ S ₄ /MWCNTs	6 M KOH	1 A g ⁻¹	2080 F g ⁻¹	52
P doped Co-Ni-S 🛛 🔆	3 M KOH	1 A g ⁻¹	3677.4 F g ⁻¹	*

Note:Refers to this work

Table S1. Comparison of specific capacitances of the other electrode materials and present work in a three-electrode system.

Table S2				
Materials	Electrolyte	Energy	Power	Ref
Cut "NirS//NSGNS	Solid state	94.05 Wh kg ⁻¹	1.09 kW kg ⁻¹	1
				-
SP-AG	Aqueous	88.5 Wh kg ⁻¹	5.3 kW kg ⁻¹	14
Ni ₃ S ₂ /CoNi ₂ S ₄ //AC	Aqueous	40 Wh kg ⁻¹	17.3 kW kg ⁻¹	9
CuCo ₂ O ₄ @Ni _{0.5} Co _{0.5} (OH) ₂ //AC	Solid state	32 Wh kg ⁻¹	0.8 kW kg ⁻¹	8
NiCo-S//NG	Aqueous	58.1 Wh kg ⁻¹	0.79 kW kg ⁻¹	42
NiCo ₂ S ₄ //rGO	Solid state	38.64 Wh kg ⁻¹	1.33 kW kg ⁻¹	23
Ni-Co sulfide NWAs//AC	Aqueous	25 Wh kg ⁻¹	3.57 Wh kg ⁻¹	40
NiCo ₂ S ₄ ball-in-ball//G/CSs	Aqueous	42.3 Wh kg ⁻¹	0.47 Wh kg ⁻¹	54
Ni-Co sulfide NSs//AC	Aqueous	41.4 Wh kg ⁻¹	0.41 Wh kg ⁻¹	15
NiCo ₂ S ₄ /MWCNTs//rGO	Aqueous	51.8 Wh kg ⁻¹	0.86 Wh kg ⁻¹	52
P doped Co-Ni-S//AC 🜟	Aqueous	68.76 Wh kg ⁻¹	0.81 kW kg ⁻¹	*

Note: Refers to this work

 Table S2.
 Comparison of specific capacitances of the other asymmetric supercapacitors and present work.