Supporting Information

C₆₀-decorated nickle-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reacton

Zhiling Du^a, Nahar Jannatun^a, Danyang Yu^b, Juan Ren^b, Wenhuan Huang^{b*} and Xing Lu^{a*}

^a State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074, China. E-mail: lux@hust.edu.cn

^b Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China, Tel: +86-29-86168830; E-mail: huangwenhuan@sust.edu.cn

Figure S1. XRD pattern of (NiCo)₅(OH)₂(CH₃COO)₈·2H₂O.

Figure S2. LDI-TOF-mass spectra of C_{60} obtained by dissolving Ni-Co-P/ C_{60} in tolune.

Figure S3. Polarization curves of Ni-Co-P/C₆₀ with different C₆₀ contents of 1.96 wt%, 3.93 wt% and 5.90 wt%, respectively.

Figure S2 shows the LSV curves for the three C_{60} -decorated Ni-Co-P catalysts with different C_{60} contents of 1.96 wt%, 3.93 wt% and 5.90 wt%, respectively. Ni-Co- P/C_{60} with a C_{60} -content of 3.93 wt% needs the lewest overpotential of 115 mV to attain the same current density of 20 mA cm⁻² among the three catalysts, which indicates that the optimum C_{60} -doping content is 3.93 wt%. The result indicates that the moderate C_{60} -doping content can improve the electrocatalytic activity of catalysts due to that excessive C_{60} -doping content can result in the coverage of active sites, and deficiency C_{60} -doping content cannot display the strengths of C_{60} .

Figure S4. CV curves of Ni-Co-P and Ni-Co-P/C₆₀ at different scan rates from 20 mV s⁻¹ to 200 mV s⁻¹ with a gradient increase of 20 mV s⁻¹: (a) Ni-Co-P and (b) Ni-Co- P/C_{60} with a C₆₀-content of 3.93 wt%.

Material	Loading (mg cm ⁻²)	Tafel slop (mV dec ⁻¹)	$\begin{array}{l} \eta_{onset} \\ (mV) \end{array}$	C _{dl} (mF cm ⁻²)	j ₀ (mA cm ⁻²)	R _{ct} (Ohm)
Ni-Co-P/C ₆₀	0.354	48	23.8	16.51	0.100	0.25
Ni-Co-P	0.354	58	103.0	6.54	0.025	0.60

Table S1. Electrochemical activity data of Ni-Co-P and Ni-Co-P/C₆₀ with a C₆₀-content of 3.93 wt%.

Material	Tafel slop (mV dec ⁻¹)	η at the corresponding j (mV)	Exchange current density (mA cm ⁻²)	Reference	
Ni-Co-P/C ₆₀	48	97 (10) 115 (20) 144 (50)	0.100	This work	
Ni-Co-P	58	148 (10) 166 (20) 200 (50)	0.025		
SnS ₂ -1500C	69	117 (10)	0.394	ACS Appl. Mater. Interfaces 9, 37750-37759 (2017)	
Mo _x C-IOL	60	117 (10)	0.18	ACS Nano 11, 7527-7533 (2017)	
N,B-CN	76.9	290 (10)	N.A	ACS Nano 11, 7293-7300 (2017)	
10% VNS	45	110 (10)	N.A	ACS Nano 11, 11574-11583 (2017)	
D-TiO2/Co@CNT	73.5	167 (10)	0.21	Nano Res. 10, 2599-2609 (2017)	
C@Ni-Co-P	43	118 (20)	0.210	Chem. Eur. J. 22, 1021-1029 (2016)	
Со-Мо-Р	50	215 (10) 254 (20)	N.A	Appl. Catal. A: Gen. 511, 11-15 (2016)	
CoMoS ₃ -prism	56.9	171 (10)	0.011	Adv. Mater. 28, 92-97 (2016)	
CoTe ₂ NPs	41	198 (10)	5.9*10 ⁻⁵	Chem. Commun. 51, 17012-17015 (2015)	
WC-CNTs	72	145 (10)	N.A	ACS Nano 9, 5125-5134 (2015)	
Ni ₂ P/CNT	53	124 (10)	N.A	J. Mater. Chem. A 3, 13087-13094 (2015)	
Fe _{0.9} Co _{0.1} S ₂ /CNT	46	120 (20)	N.A	J. Am. Chem. Soc. 137, 1587-1592 (2015)	
MoS ₂ -MoN/N-C	52	200 (52)	0.46	Chem. Eng. Sci. 134, 572-580 (2015)	
Ni-Al-P	65	111 (10) 142 (20)	0.6	ACS Catal. 5, 6503-6508 (2015)	
CoP/CNT	54	122 (10)	0.130	Angew. Chem. Int. Ed. 53, 6710- 6714 (2014)	
$CoS_2 NW$	51.4	145 (10)	0.015	J. Am. Chem. Soc. 136, 10053- 10061 (2014)	
Ni ₂ P nanoparticles	46	130 (20)	3.3*10-3	J. Am. Chem. Soc. 135, 9267-9270 (2013)	

Table S2. Comparison of HER performance in acidic electrolytes for Ni-Co-P and Ni-Co-P/C₆₀ with recently reported electrocatalysts.