## Supporting Information



**Figure S1.** AFM surface image of monolayer  $MoS_2$  grown on  $SiO_2/Si$  substrate, showing the uniformity and flatness of the 2D layer. The root mean squared (RMS) roughness is estimated to be 0.19 nm.



**Figure S2**. (a) Microscopy image of monolayer  $MoS_2$  on the TEM grid with ultrathin support SiO<sub>2</sub> films for STEM, 8 nm membrane thickness. The upper right part show the bare Si for comparison. The SiO<sub>2</sub> support films consist of pure and amorphous thermal SiO<sub>2</sub> membrane with a size of 70 x 70 µm on a perfectly round 3 mm Si frame as a platform. The TEM grids offer super flatness and high-temperature tolerance. Thus, the 2D layers were directly grown on TEM grids for STEM at the same condition as on the SiO<sub>2</sub>/Si substrates i.e. 750 °C. (b) ADF-STEM image of monolayer MoS<sub>2</sub> with

alternating Mo and S columns arranging into hexagonal structure, which can be identified as the high quality 2H-MoS<sub>2</sub>.



**Figure S3**. XPS spectra of the PVD-grown  $MoS_2$  (black) film and bulk single crystal (red). The peaks of Mo 3d and the full width at half maximum (FWHM) are comparable.



**Figure S4**. Calculated structure energy of heterostructures with different twist angles, relative to the most stable 2H structure with the lowest energy (set at zero). The stability of 3R is comparable to that of 2H, whereas the structures with  $0^{\circ} < \theta < 60^{\circ}$  twist angles are less stable by about 0.035 eV.



**Figure S5**. (a) Density of states (DOS) for WS<sub>2</sub> monolayer (red curve) and MoS<sub>2</sub> monolayer (black curve). (b) The band structures and the partial charge densities (at  $\Gamma$  point in VBM) of WS<sub>2</sub> and MoS<sub>2</sub> monolayers by DFT calculations. The VBO and CBO of the WS<sub>2</sub>/MoS<sub>2</sub> heterostructure are estimated to be 0.38 eV and 0.33 eV, respectively.

**Table S1.** Calculated interlayer distance (d), total energy ( $\Delta E$ ), and band gap of the heterostructures with different configurations.

| Twisted angle | Interlayer<br>distance (Å) | Total energy<br>(meV/unit cell) | Г-К (eV) | K-K (eV) |
|---------------|----------------------------|---------------------------------|----------|----------|
| 0° (3R)       | 6.20                       | 0.20                            | 1.10     | 1.29     |
| 13°           | 6.44                       | 35.27                           | 1.16     | 1.23     |
| 22°           | 6.43                       | 35.62                           | 1.16     | 1.23     |
| 38°           | 6.44                       | 35.62                           | 1.16     | 1.23     |
| 47°           | 6.44                       | 35.41                           | 1.16     | 1.23     |
| 60° (2H)      | 6.20                       | 0.00                            | 1.08     | 1.24     |
| 60° (2H)      | 6.20 + 0.24                | -                               | 1.19     | 1.23     |
| 60° (2H)      | 6.20 + 0.5                 | -                               | 1.26     | 1.22     |
| 60° (2H)      | 6.20 + 1.0                 | -                               | 1.35     | 1.21     |
| 60° (2H)      | 6.20 + 1.5                 | -                               | 1.40     | 1.20     |
| 60° (2H)      | 6.20 + 2.0                 | -                               | 1.42     | 1.20     |