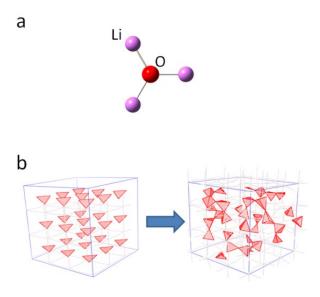
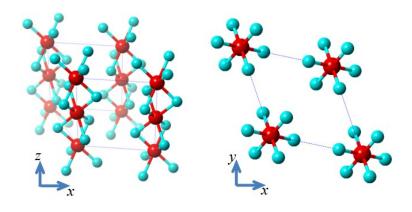
Supporting Information

"Super-alkalis as Building Blocks of One-Dimensional Hierarchical Electride"

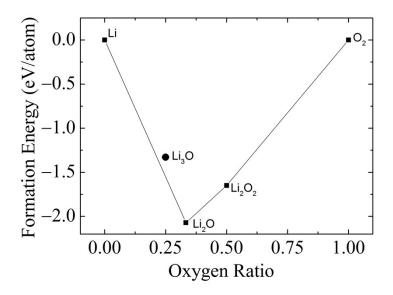
Hong Fang *,‡,§, Jian Zhou†,§ and Puru Jena*,‡

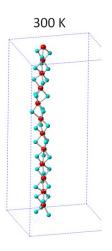

[‡]Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States.

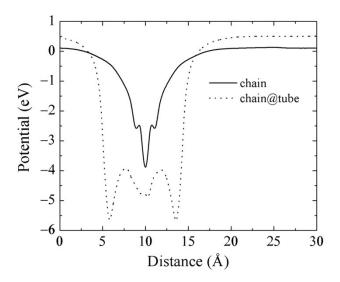
[†]Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.


§These are co-first authors.

*pjena@vcu.edu (P.J.); hfangtom@gmail.com (H.F.)


Figure S1. (a) Optimized structure of Li₃O cluster in a planar configuration. (b) Molecular dynamics simulation at 300 K for a perovskite structure Li₃OGeI₃, where Li₃O clusters are serving as cations. The clusters self-assemble into chain structures.


Figure S2. Optimized structure of three-dimensional Li_3O assuming it has the same crystal structure as Cs_3O .


Figure S3. Calculated Li-O phase diagram, where Li₃O is found to be above the convex hull.

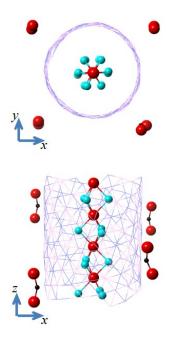

Figure S4. The snapshot of 1D $1\times1\times6$ Li₃O after simulations at 300 for 5 ps. The structure remains stable.

Figure S5. Calculated work functions of Li_3O and Li_3O @BNNT. The Fermi energies for the two are -2.36 and -1.51 eV, respectively.

Figure S6. Optimized structure of the unit cell of $\text{Li}_3\text{O@BNNT}$ activating four CO_2 molecules at once.

