Supplementary Information

Surface functionalization-induced photoresponse characteristics of

monolayer MoS₂ for fast flexible photodetectors

Sangyeon Pak,^{‡a} A-Rang Jang,^{‡ab} Juwon Lee,^a John Hong,^a Paul Giraud,^a Sanghyo Lee,^a

Yuljae Cho,^a Geon-Hyoung An,^a Young-Woo Lee,^c Hyeon Suk Shin,^b Stephen M. Morris,^a

SeungNam Cha, *ad Jung Inn Sohn, *e and Jong Min Kim^f

^a Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom

^b Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

^c Department of Energy Systems, Soonchunhyang University, Asan, Chungcheongnam-do, 31538, Republic of Korea

^d Department of Physics, Sungkyunkwan University (SKKU) Suwon, Gyeonggi-do, 16419, Republic of Korea

^e Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

^f Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom

‡ S. Pak and A. -R. Jang contributed equally to this work.

* Corresponding author. Tel: +44-1865-273912. Fax: +44-1865-273010.

E-mail address: seungnam.cha@eng.ox.ac.uk, junginn.sohn@dongguk.edu

Fig. S1 Photoresponsivity with respect to the incident illumination powers for the pristine, ODTS-, and APTES-MoS₂ devices.

The photoresponsivity $R = I_{ph}/P$ was calculated for the pristine, ODTS-, and APTES-MoS₂ devices, and these values reached maximum values of 1500 A/W and 37.5 A/W at the lowest incident power for the APTES-MoS₂ and ODTS-MoS₂ devices, respectively. Photoresponsivity represents photocurrent generation respective to the incident illumination power. Therefore, the APTES-MoS₂ device with higher photoresponsivity suggests that more excitons were transported through the functionalized channel.

Fig. S2 Detectivity with respect to the incident illumination powers for the pristine, ODTS-, and APTES-MoS₂ devices.

The detectivity D* can be expressed as $D^* = \sqrt{AB} / NEP$, where A is the device area, B is the bandwidth, and NEP is noise-equivalent power which is the minimum detectable power when the signal-to-noise is equal to unity and bandwidth is limited to 1 Hz. The detectivity takes account the noise of a device, device area, and bandwidth. Highest detectivity of 10¹¹ cmHz^{-1/2}W was measured for the ODTS-MoS₂ device under the lowest illumination intensity, and it can be attributed to the lowering of the dark level by effectively withdrawing electrons from the channel.

Fig. S3 Time-dependent photocurrent measurement of the flexible MoS₂ photodetector before

and

after

ODTS-functionalization.

Summary of performance of MoS ₂ photodetectors							
Materials	Device Type	Operation	Photoresponsivity (A/W)	Detectivity (cmHz ^{-1/2} W)	Rise Time (s)	Decay Time (s)	Ref
1L-MoS2	Phototransistor	V _{gs} = -70V V _{ds} = 8V	880	-	4	9	Nat. Nanotech. 8, 2013 (Ref 1)
Multilayer MoS2	Phototransistor	V _{gs} = -3V V _{ds} = 1V	0.05-0.12	10 ¹⁰ -10 ¹¹	-	-	Adv. Mater. 24, 2012 (Ref 2)
1L-MoS2	Phototransistor	$V_{gs} = +50V$ $V_{ds} = 1V$	2200	-	10-100		Adv Mater. 25, 2013 (Ref 3)
1L-MoS2	Phototransistor	$V_{gs} = +60V$ $V_{ds} = 1V$	415-1750	-	-	-	Nat. Commun. 8, 2017 (Ref 4)
Multilayer MoS2	Photodetector	V _{ds} = 10V	0.057	1.55 x 10 ⁹	-	-	Adv. Mater. 29, 2017 (Ref 5)
1L-MoS2	Photodetector	V _{ds} = 3V	178		>30		Adv. Mater. 29, 2017 (Ref 6)
1L-MoS2	Photodetector	Vds = 0.1-1V	37-1500	10 ⁹ -10 ¹¹	1.6	0.7	This work

Table S1. Summary and comparison of the MoS_2 photodetectors.

- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, *Nat. Nanotechnol.* 2013, 8, 497.
- (2) W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. -B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, S. Kim, Adv. Mater. 2012, 24, 5832.
- (3) W. Zhang, J. -K. Huang, C. -H. Chen, Y. -H. Chang, Y. -J. Cheng, L. -J. Li, *Adv. Mater.* 2013, 25, 3456.
- (4) J. Lee, S. Pak, Y. -W. Lee, Y. Cho, J. Hong, P. Giraud, H. S. Shin, S. M. Morris, J. I. Sohn, S. Cha. J. M. Kim, *Nat. Commun.* 2017, *8*, 14734.
- (5) Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao, B. Huang, L. Mei, J. Wang, *Adv. Mater.* **2017**, *29*, 1605972.
- (6) J. Lee, S. Pak, P. Giraud, Y. -W. Lee, Y. Cho, J. Hong, A. -R. Jang, H. -S. Chung, W. -K. Hong, H. Y. Jeong, H. S. Shin, L. G. Occhipinti, S. M. Morris, S. Cha, J. I. Sohn, J. M. Kim, *Adv. Mater.* 2017, *29*, 1702206.