Supplemental information

Electrical switching properties and structural characteristics of GeSe-GeTe films

Kun Ren^{1,2}, Min Zhu^{1, *}, Wenxiong Song^{1, *}, Shilong Lv¹, Mengjiao Xia³, Yong Wang¹, Yaoyao Lu¹, Zhenguo Ji² and Zhitang Song^{1, *}

¹ State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China

² Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou, Zhejiang, 310018, People's Republic of China

³ International Laboratory of Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China

*e-mail: minzhu@mail.sim.ac.cn;

songwx@mail.sim.ac.cn

ztsong@mail.sim.ac.cn

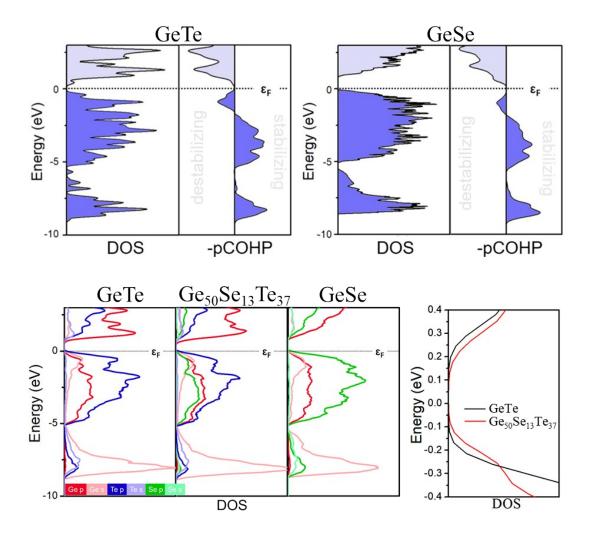


Figure S1. (a) Densities of states (DOS) and projected COHP analysis for Ge-Te bonds in rhombohedral GeTe. The band gap for GeTe and GeSe are 0.27 eV and 0.95 eV, respectively. The left and right part of -pCOHP indicates the destabilization interaction (antibonding) and stabilization interaction (bonding), respectively. (b) DOS and projected COHP analysis for Ge-Se bonds in orthorhombic GeSe. Same COHP analysis as GeTe, but for GeSe. (c) The partial DOS of Ge, Te, and Se atoms in rhombohedral GeTe, $Ge_{50}Se_{13}Te_{37}$ and orthorhombic GeSe, projected onto their outmost s and p orbits. (d) DOS of GeTe and $Ge_{50}Se_{13}Te_{37}$ near Fermi level (ε_F). Bandtail states exists in $Ge_{50}Se_{13}Te_{37}$, which narrows the band gap.