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$1: Optical transmittance spectra for structured and flat samples
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Figure S1. Transmittance measured by visual light spectroscopy. Traces show transmittance as a function of
wavelength. Topmost trace is for a sample nanostructured on one side, while the bottommost trace is for the
corresponding unstructured flat sample. The structured sample has ~1 % higher transmittance in the visible
spectrum. The width of the curves corresponds to + SD from nine samples. The PMIMA samples block light for
wavelengths below ~400 nm.

S$2: Low-pressure Ar plasma activated PMMA surfaces
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Figure S2. Calibration of the plasma exposure time. Young’s contact angle as a function of Ar plasma exposure
time. Dashed line is a linear fit to the data, with slope (-030+0.03) s, and y-axis intersection (66.5+0.8) °
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Table S1. The relative signal content of C4 (C(0)-O) and C3 (C-O) in XPS spectra of pristine and Ar plasma
treated PMMA surfaces (Ar plasma: 5W, 60 Pa, 70 s, ~2 h after plasma activation) . Uncertainties, obtained
from residuals between Gaussian fits and data, are smaller than the significant digits shown.

Untreated Ar plasma treated

C4/total signal 18 % 22 %
C3/total signal 18 % 19 %
ca/c3 1.0 1.2

S3: Roughness of unstructured PMMA surfaces activated by Ar plasma
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Figure S3. AFM 3D scans of pristine flat PMMA surface and 70 s Ar plasma treated flat PMMA surface.
Arithmetic mean deviation R, figures are given for both surfaces.
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S4: Analysis of hemiwicking data
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Figure S4. Data analysis for the three-phase-line propagation and the hemiwicking flow. a: Three examples
of droplet propagation data obtained for samples exposed to 50 s of Ar plasma. b: A log-log plot for all 50 s
Ar plasma data. Droplet displacements, x as functions of corresponding displacement times. The straight
dashed lines show linear fits to the curves for times < 10 s. The average exponent 0.94 is also indicated. c:
Summery of all exponents, both for 50 s and 100 s Ar exposure, plotted as a function of dispensed droplet
volume. We see that all exponents fall in the range [0.85; 1.00]. d: Three examples of droplet propagation
data obtained for samples exposed to 100 s of Ar plasma. The black curves represent radial displacement of
the macroscopic droplet front, while the colored curves represent the nano-wicking flow. Times and positions
when the macroscopic droplets stop is indicated for all three curves. e: The nano-wick displacement
subtracted the corresponding macroscopic droplet standstill time and position. The macroscopic droplet
propagation is omitted in this plot as it coincides with the abscissa. The graph also shows linear fit lines to the
data in the interval [-5;0] s extended to full axis limits. f: The slopes of the linear fits from panel S4e quantifying
the nano-wick propagation speed as a function of the apparent contact angle. The contact angles were
obtained from the measured droplet radii in the droplet standstill conditions and the dispensed droplet
volume by solving Equation S1. Error bars for the contact angles are obtained by the standard method for
error propagation from experimental uncertainties in dispensed droplet volumes. The base radius uncertainty
was neglected due to its small size as compared to the volume error.

The relationship between contact angle 8 and droplet base radius R for a spherical droplet having volume
Vy is given by:

_ 3V sin®(6)
R = T <2 — 3 cos(0) + cos3(9)> ' (s1)
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S$5: Geometry of nano-surfaces

The roughness factor is defined as the ratio of the real surface in contact with the liquid to its
projection onto the horizontal plane'. For a hexagonal array of cylindrical pillars, the roughness
factor is given by:

%\/gaz + ndh _ %\/g (%)2 tr (g) (SZ)

B MG

Teyt =

where a is the center-center inter-pillar pitch length for the hexagonal pillar array, d is the diameter
of pillars, and h is the height of pillars. Assuming the pillars are capped with a hemisphere, we
instead get:

_ WEa? + md(h - 3d) + bra?

S3
Sp %\/gaz ( )

Table S2. Dimensions and roughness factors of BCP nanopillar templated surfaces with and without SiOx and
W coatings and their associated experimental uncertainties.

d [nm] h [nm] a [nm] Teyr ® Top”
BCP 55.1+1.6° 55+5¢ 73.3+1.1°¢ 3.0+0.2¢ 2.5+0.2¢
BCP+SiOy 66.0+1.4° 66+5¢ 74.0+2.1°¢ 3.9+0.3¢ 3.2+0.3¢
BCP+W 58+2°¢ 58+5¢ 73.5£0.9° 3.3+0.1¢ 2.7+0.1¢

2Wenzel roughness factor calculated using Equation (S2).

® Wenzel roughness factor calculated using Equation (S3).

¢SD, n=10 obtained from SEM images.

4Estimated from tilted SEM and Helium-ion imaging.

€Error calculated with the standard formula for error propagation for independent variables.
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$6: Laplace pressure model

d
3 3.0 1.6
P [ Oy = 24°
8 25} x15
2 o
Q o
£ 20} gt 30°
5 . A
] L Oy= ©13
£ 15 |- 35°
.............. 5 . S 12
- = s : 5 | 7 40°
s 10> £ BCP4SiO,
C 3 : - { 45°
| - -] 1
Al n & 05 L 1.0 e
0y 7."9,, 1.0 1.1 1.2 13 14 1.5 08 09 10 11 1.2
< b > Pitch to diameter ratio a/d Pillar aspect ratio h/d

Figure S5. a: Schematic of top view of a pillar array comprised of cylinders. The lateral radius of curvature in
the Laplace pressure is indicated in top view (R, ) together with the vectors AB and AO. The lattice constant
a of the pillar array is shown together with the pillar diameter d. b: Schematic of cross sectional view along
x-axis of the pillar array. The vertical radius of curvature (R,) and cross section view of the pillar structure is
shown together with the line segment CD. The height h of pillars, and b, the shortest distance between next
nearest pillar rows, are also indicated. c: Examples of computed horizontal and vertical radii of curvatures,
(R4, Ry) in units of the pillar diameter as a function of the ratio between pitch and pillar diameter, a/d. The
curves are plotted for the case of height to pillar diameter aspect ratio h/d =1 and for various values of the
Young contact angle 8y.The intersections between the Ry and the R, plots indicate the zero Laplace pressure
solutions. d: Red curves represent the Wenzel hemiwicking threshold. Wenzel curves for 8y = 67°, 709 and
73°are plotted. The blue curves represent the Laplace hemiwicking condition obtained from a numerical
solution of the equation Ry = R,, where the radii of curvatures are obtained from Equations (54) and (S5).
Laplace model plots for 8y = 24°, 309 35 ¢ 40 °and 45 °are shown. The relevant parameter space for the BCP
structures replicated in PMMA, and the corresponding parameter space for the surfaces after the coating
with an approximately 11 nm thick layer of SiOx are indicated by the elliptical patches representing the
uncertainty in the determination of the geometrical parameters (see Table S2).

For the sake of simplicity, we assume to start with that pillars are cylindrical. The model is based on
a calculation of the Laplace pressures associated with the menisci for the hemiwicking liquid front
as it passes a row of nano-pillars. Hence, we impose the condition that the Laplace pressure inside
the liquid need to be negative in order to support the hemiwicking flows. If the Laplace pressure Ap
inside the hemiwicking liquid becomes zero before the three-phase-line reach the next row of
pillars, the wicking flow will stop, as the pillar array will effectively have a capillary stop action. The
critical condition for hemiwicking is thus that the meniscus having radius R; at the bottom of the
pillar array can reach the next row of pillars before the Laplace pressure Ap changes sign from
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negative to positive. From inspection of the geometry in Figure S5a,b (see below for a more
thorough derivation), the two radii of curvature can be expressed as

w -6 -0))

= ) (S4)
cos(6y) — 2
and
2 2
R -

d (%) cos(6y) — (g) sin(6y) ’

where b = v/3a — d is the shortest distance between next nearest pillar rows. Equation (S5) is valid
under the assumption that the liquid surface reaches the full pillar height at the narrowest gabs
between the pillars as shown in Figure S5a. This assumption is satisfied for very dense pillar arrays,
i.e. when (a — d) is small compared to the pillar diameter d.? In Figure S5¢ we show the calculation
of the radii R; and R, in units of the pillar diameter in the case of unity aspect ratio h/d =1,
whereas in Figure S5d we show numerical solutions for the Laplace hemiwicking condition (the blue
curves) obtained from the condition R; = R, for the indicated values of Young’s contact angle 6y.
For a material having a given Young contact angle, superwetting will occur for the parameter space
below a given trace. In the figure we also show the corresponding traces (red) indicating the critical
Wenzel condition,r. = 1/cos(6y). Likewise, according to the Wenzel condition, liquid will spread
on the surface for the parameter space below the red traces for the respective Young contact angles.
In Figure S5d we have also indicated the estimated relevant parameter space for the physical BCP
structures replicated in PMMA, and the corresponding parameter space for the surfaces coated with
an approximately 11 nm thick layer of SiOx. The parameter ranges covered by the two elliptical
shapes represent the physical variation or uncertainty in the determination of the geometrical
parameters (see Table S2). From Figure S5d we see that the Wenzel threshold condition, r >
1/cos(8y) is more forgiving than the Laplace condition Ap < 0 as ranges of parameters for the ratio
a/d and aspect ratio h/d will require a considerably lower Young contact angle 6y for the Laplace
condition to be satisfied than for the Wenzel condition to be satisfied. For pristine uncoated BCP
nanotextured PMMA samples having 8y, = (68+2)° and r = 3.0£0.2 (see Table S2), we would expect
complete wetting behavior according to the Wenzel condition, while experimentally superwetting
seems to occur only when 6y gets below ~50°. One immediate implication from the Laplace
pressure model is that no solution to the equation R; = R, seems to exist for 8y higher than ~50°.
This is shown in Figure S5c¢, where we plotted the radii of curvature as a function of the pitch to
diameter ratio (a/d) for the case of h/d = 1. We see that when 6, approaches 50° there is no
intersection between R, and R, for physically relevant parameters a/d > 1.
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To derive the expression for R; in Equation (S4), we consider Figure S5a and let point A be the

intersection between the three-phase-line and the pillar boundary having the coordinates (x4, y;)

and point B the center of the pillar with coordinates (xq, ¥o) in the reference system with origo in
— 2 B

point 0, such that |A0| = x? + y? = R?, |AB| = d/2, and y, = a/2. The angle 8, between

) and A0 = (—J’1) can then be expressed by

vectors E = (yO

1
N

AB - A0 _ (;g : ;C’i) . (:;C/i) 2R? — {2xox; + )’1‘1}.

cos(Oy) = —— = = (S6)
""" |4B||40| Ryd/2 R,d
By exploiting that point B is located on a circle having radius d /2 we get
d\2

(x1 —x0)* + (Y1 = y0)* = (E) . (57)

By inserting x2 + y? = R? and y, = a/2 in Equation (S7) we get

) a2 d\2
R’ + (E) — {2xpx; + ya} + x& = (E) : (s8)

From Equation (S6), we isolate{2x,x; + y;a} to insert into Equation (S8) and subsequently
substitute x, = R; — b/2, where b = 2a cos(30°) —d = +/3a — d s the distance between next
nearest pillar rows, we get

d\> a\?2  (b\’
== =(2) =(=). (S9)
Ry(d cos(8y) — b) (2) ®) (2)
By rearranging we finally get Equation (S4).
Likewise to derive the expression for R, in Equation (S5) we exploit that the length of the line
segment CD in Figure S5b equals R, but can also be expressed by
b 2
|CD|? = (E+ R, sin(9y)> + (R, cos(By) — h)? = Ra. (s10)
Rearranging and cancelling terms we get
b 2
R,(2h cos(8y) — bsin(6y)) = (E) + h2. (s11)

Finally by another rearrangement, we get Equation (S5).
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Figure S6. Corrections to the Laplace pressure model due to effects of tapered pillars (taper angle a) and
sloped (angle B with horizontal) substrate bottom at the root of the pillars. a: Schematic of cross-sectional
view along a symmetry-axis of the pillar array (corresponding to the view shown in Figure S5b, but here with
sloped bottom and pillar taper). The height h of pillars, taper angle a, and slope angle 8 with horizontal are
also indicated. b: Examples of computed Laplace pressure curves corresponding to the indicated values of (a
, B). The curves are plotted for the measured values of lattice constant a, top pillar diameter d, and pillar
height h. The shaded region indicates the experimentally determined range Young’s contact angles, where
crossover is observed between the supperwetting, state represented by negative Laplace pressures, and the
pinned state, represented by positive Laplace pressures.

To ease the harsh 6y < 50° condition obtained above for cylindrical pillars placed on a perfectly
planar substrate bottom, we only need to assume a sloped (angle § with horizontal) substrate
bottom at the root of the pillars. Considering the fabrication by injection molding of the pillar-built
surface, a sloped substrate bottom is moreover a more realistic geometry. This is the case as the
governing angle in the derivation of R, is the angle to the horizontal direction, and hence a slope
with angle 8 will have to be subtracted from 6y in the calculation of R, in Equation (S5). Further as
shown Figure S6 a shift toward higher a/d occurs when having a small taper of the pillars. As it is
the condition at the bottom of the pillars that govern the hemiwicking flow, whereas the pillar
diameter is measured at the top of pillars, then for h = d, a small taper of the pillars corresponds
to making the replacement (a/d) — (a/d)(1 + 2 tan a)~! in Equations (S4) and (S5), whereby the
pillar array effectively gets denser. The transition from the pinned - to the superwetting state occurs
when the Laplace pressure for the meniscus of the hemiwicking liquid front emerging between
pillars changes sign from positive to negative. Hence, in Figure S6b we show how the Laplace
pressure changes sign when Young’s contact angle crosses the transition. The experimentally
observed crossover Young contact angle for superwetting of ~50°-55° can be obtained with e.g. a
~ 6° and B ~ 30° for the measured geometrical parameters from Table S2. Although a precise
measurement of the slopes was not possible due to lack of resolution, we found experimental
support for the tapered pillar walls and sloped bottom in the SEM analysis (see e.g. Figure 5b).
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S$7: The “sunny side up” wetting model

The ”sunny-side up” model of Ishino and Okumura3 based on initial experiments of Bico et al.#, with
the yolk representing the sessile droplet, and the white representing the wicked water film (Figure
S7), is here derived for a hexagonal array of pillars capped with oblate half-spheroids. The model is

finally compared to contact angle data from Figure 1a.
_________________ AW TTTTTTTTTTTTTTTTT

Figure S7. Sketch of the model. The drop is placed on a hybrid surface composed of a wicked water film and
the dry pillar tops. Pillar tops are assumed to be capped with oblate half-spheroids.

Now following Miwa et al.> and Whyman et al.! we can express the apparent contact angle 0 for a
small droplet in thermodynamic equilibrium sitting on a chemically heterogeneous rough surface

comprised of the wicked water film and the dry pillar caps by:
(S12)

A A
W>c059y+(1— WP).
Ahex

hex

c050=(

73012. Due to the dependencies of Ay, and Ay p on By, we will see that 8 becomes

With Ay, = 2

slightly more complicated than was the case for perfectly cylindrical pillars reported by Bico et al.*.
The model corresponds to the well-known Cassie® model for a chemically heterogeneous rough
surface comprised of pillar caps with local contact angle 6y, and a wicked water film having contact

angle 0.
We now turn to find the areas Ay, and Ay, p in Equation (S12). The area of the oblate spheroid above

the wicked water film, i.e. the dry area, is given by:
(S13)

T
2

t= [ () 4 (2) 4
a
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where (x,y) = ( cos<p,—sm <p) This area will contribute to a Wenzel-like roughness; hence the

index “W” is used to designate this area. By Introducing the eccentricity of the oblate spheroid, € =
2
c
1- (3) , we get

T
2

d 2
Ay =21 (E) f cos@p+/1—€2cos?@dp, (514)
a

where the angle «a is a function of Young’s contact angle 8y and eccentricity € through the relation
tana = (1 — £2) cot By. The projection of the dry area is given by

d 2
__(G) _ (s15)

For £ > 1, the pillars become cylinders with completely flat caps and Ay, = Ayp = m(d/2)?,
whereby also the dependence on 8y disappears as expected.

Next we plot our data from Figure 1a together with the contact angle obtained from Equations (S12-
$15). This is shown in Figure S8.
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Figure S8. The data from Figure 1a plotted together with the contact angle 8 obtained from Equations $12-
S15 with € = 0, i.e. for a hemi-spherical cap. No adjustable parameters are used, as measured values d =
55.1 nm and a = 73.3 nm (found in Table S3) are applied in the computation.
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In Figure S8, we plot only model data corresponding to € = 0. For € = 1, the model is equivalent to
the expressions of Bico et al.* and Ishino and Okumura3®, which for our data gives 8 ~30° at 8, =~
40°. The dependence on cap eccentricity is, however, not a monotonic function, and yields a
minimum contact angle for € = 0.75. We see that the model can be used to predict an asymptotic
value for low Young contact angles, i.e. for 8y < 50°, whereas for higher 8y the data begin to
deviate substantially from the model. We interpret this deviation as a transition to the so-called
pseudo-Wenzel state3, where the droplet leaves thermodynamic equilibrium.
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$8: Surface coatings
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Figure S9. SEM image of PMMA nanotexture after coating with. a: ~11 nm of SiOx and b: ~8 nm of W.

PMMA + SiOx
R,=(1.70£0.12) nm

Z[nm]
5.0
-5.0

PMMA + W
R,=(0.55+0.10) nm

Figure S10. AFM 3D scans of pristine flat PMMA surface with SiOx and W surface coating. Arithmetic mean
deviation R, figures are given for both surfaces.
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Figure S11. a: Thickness of the tungsten (W) layer measured (red dots) as a function of deposition time. A
linear fit (blue dashed line) is shown. b: Transmittance spectra from PMMA samples with tungsten (W)

coating. Traces show transmittance spectra for increasing W deposition time corresponding to increasing
thickness of W.

S9: Young’s contact angle vs. surface free energy
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Figure S12. Contact angle as a function of material surface free energy. °Data obtained from:
https://www.accudynetest.com/polytable 03.html?sortby=contact angle (accessed April 26’th 2018). bsp,
n =5, error calculated with standard method for error propagation.
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Table S3. Surface free energy and the corresponding proxies for the Young contact angle of common
polymers. Data obtained from https://www.accudynetest.com/polytable 03.html?sortby=contact angle
(accessed April 26’th 2018).

Polymer name Y [mN/m] CA[]
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$10: Contact angle measurements
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Figure $13. Contact angle measurements were done using the droplet inflation methods, were the capillary
was left inside the droplets during the contact angle fitting. The droplets were slowly inflated with water to a
total volume of 6.5 ulL. Data recorded during the first 10 seconds were typically corrupted by the presence of
the inflation capillary and were discarded for contact angle determination. The figure shows the fitted contact
angles as function of time during the inflation process for two representative datasets that were used in
Figure 1; one set (upper panel) for the pinned state, were the structured surface has higher contact angle
than the unstructured counterpart subjected to the same Ar plasma treatment, and another set (lower panel)
for the superwetting state, were the contact angle for the structured surface was lower than for the
corresponding unstructured one. Due to use of the inflation method, the recorded contact angles are
interpreted as advancing contact angles. After having ensured that the fitting procedure converged, the last
images were used for obtaining the advancing contact angles in Figure 1. The error bars represent the
absolute value of the difference between the fitted contact angles from the left and the right sides of the
droplet profiles.
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