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1. General analytical methods and chemicals

All starting materials were commercial and used as received. Elemental analysis was
performed using a Vario EL elemental analyzer. 'H, 3'P and 5'V NMR spectra were recorded
on a Bruker 400 MHz spectrometer at room temperature using CD3;CN as solvent. Chemical
shifts (6) are given in ppm. IR spectra were recorded on a Nicolet Avatar 360 FTIR
spectrometer by using KBr pellets (myg; = 250 mg) in the 4000-400 cm~' range. ESI mass
spectra in positive and negative ion modes were recorded on a ThermoFisher Scientific

LTQ-Orbitrap XL mass spectrometer system in acetonitrile.

2. Infrared (IR) spectra

— I-Ligand
—WD
— WD-I

>

W

(O]

o

c

i

£

7))

c

S

|_

] B ] v 1 v I ' 1 ' I
3000 2500 2000 1500 1000 500

Wavenumber / cm’’
Fig. S1. Comparison between the IR spectra of the triol (HOCH,);CCH,OCH,CgsHyl ligand (I-Ligand),

unfunctionalized POM  compound  (nBusN)s[H4P2V3W50e]  ((NBusN)sWD) and  the  target
(nBU4N)5[HP2V3W15059((OCH2)3CCH20CH206H4|)] Compound ((nBu4N)5WDI)

S3



3. Nuclear magnetic resonance (NMR) spectra
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Fig. S2. 5'V NMR (105 MHz, CD;CN) spectrum of WDI.
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Fig. 3. 3'P NMR (162 MHz, CD;CN) spectrum of WDI.
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4. Electrospray ionisation (ESI) mass spectrometry data
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Fig. S4. Comparison of the calculated (left) and the measured (right) isotopic pattern of (nBusN);H[POM-L]?*.
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Fig. S5. Comparison of the calculated (left) and the measured (right) isotopic pattern of (nBusN),H,[POM-L]>
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Fig. S6. Comparison of the calculated (left) and the measured (right) isotopic pattern of (nBusN)s[POM-L]?*.

Table S1. Selected ESI mass spectrometry data of (nBusN)sWDI measured in acetonitrile. L = ligand.

Composition Sum formula Calculated Measured
[(nBusN);HPOM-L]?* C124H267N71063P2V3W 52+ 2981.86 2981.35
[(nBuyN)sPOM-L]?* C140H302NglOg3P2V3 W52+ 3103.01 3102.99
[(nBusN)H,POM-L]3- C2gHs5oN10g3P2V3W 53~ 1503.01 1502.73
[(nBugN),HPOM-L]3- CasHg7N2IOg3Po VW54~ 1584.11 1584.16
[(nBugN),H,POM-L]? Ca4HggN2lOg3Po VW52~ 2376.16 2376.26
[(nBugN)sHPOM-L]?> CeoH124N31063P,V3 W52 2497.31 2497.40
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5. Small-angle X-ray scattering (SAXS) evaluation and model description

The scattering of a system, composed of spherical units diluted in a medium is given by the
product of the particle form factor P(q) and the structure factor S(q), which represents the
scattering from a specific spatial organization of the composing spheres. The intensity

distribution as a function of the scattering vector q is written as
1(@) = pLp*VP(@)S(q)

where ¢ is the volume fraction of the spheres, APZ the contrast factor, given as the squared
difference between the particular electron densities for the sphere and the medium multiplied
by the radius of the electron, and V is the volume of the scattering particle. If compositional
information about the sphere is known, these parameters can be calculated a priori. S(q) is

1 in the dilute, non-interacting state.

Agglomerating single spheres lead to a fully different scattering pattern. Due to the
agglomeration the length scales of single and agglomerated particles may differ enormously.
The empirical unified approach by Beaucage et al.,'? which assumes that each level of
scattering units can be represented as a sum of a Guinier function at low q and a power law

at high q, is simplified in the present case to

(4R,p)"

3 q

qR gl
(ngd)Z) e - <ngp)2) el

I(q) = pAp Vexp( -

+ ZVexp(—

where B is a crossover parameter that connects both length scales and different scattering
contributions. For special morphologies sometimes an analytical form for B exists. Since the
primary particle is small, compared to the accessed length scales in the SAXS experiment,

only the Guinier expression, i.e. the first term in the summation, remains of it.

The exponent D describes the high q decay of the intensity and is called the Porod exponent
of the agglomerated species, which allows an interpretation of the local surface in terms of
a fractal model. The agglomeration number Z and the size Ry are discussed in the main

text.
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The contribution of the water clusters, which possibly exist in mixtures of water and
acetonitrile were approximated by their Guinier form factor, weighted by the contrast
between the two solvents and fitting the radius of a water cluster R,,. This contribution® was

added incoherently.

Finally, also correlations between the components were included. Instead of a hard-sphere
interaction a considerably softer but nevertheless effective description was used.* We
assumed the structure factor to follow a first-order correction similar to a virial analysis and
claim that

S(@) =1/ + FX(@)

with

X(q) = 3(sin (q¢) - (g5)cos (4¢))/(qs)’

Here, ¢ is the effective interaction radius and F the number of geometrical neighbors.

Summarized, the presented data are thus fitted to the sum of the single contributions i.e.

coherent and incoherent scattering as

I(q) =

WRyp)’ aRye)” ar A\ V6
HAp? Vexp(—( ov) )+ZVexp(—( gcl) )+Bdexp(—( o) ) V6 )l |,
3 3 3 q
+(1-9)
(1 4 o 3610 (a9) - (gg)cos (qc)))
(q9)° any
4 qR

< Isolvent > + (1 - ¢)¢H20Apsolvent2(?n)R3V expiffz,! - 5W )

The g-independent incoherent background of the solvent is given by </syyen>. It depends on
the water content and was not subtracted beforehand. A decomposition of the 10 % water
mixture scattering into the single contributions and joined according to the former expression
is shown below. From top to bottom: S(q), total intensity, the model for agglomerated
particles, the primary particle scattering, the mixed solvent incoherent background scattering

and water cluster scattering.
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Fig. S7. Scattering contributions of a 10 % water-containing acetonitrile solution of WDI.
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6. SAXS data
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Fig. S8. SAXS intensities of the WDI-containing MeCN solutions with 0, 2, 3 and 5 % of water at lower

temperatures.

Additional SAXS measurements of a highly concentrated WDI solution (180 uM) performed
at lower temperatures (approx. 15°C) showed a clear precipitation effect in the water
containing samples. Between the short detector distance (ssdd) and long detector distance
(Isdd) measurements (time interval approx. one day) the spectra intensity was significantly

decreased, which can only be explained by a partly precipitation of WDI under these

conditions. The waterless sample remained unaffected.
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Fig. S9. Zoom-out on the schematic drawing of regime IV (cf. Fig. 3). The blue octahedrons represent densely
packed WDI particles. Water molecules and nBusN* countercations are not shown for clarity.

To illustrate the special situation in regime IV a zoom-out of Figure 3 (IV) is shown in Figure
S9. The geometry factor P = 6 indicates the formation of agglomerates consisting of densely
packed WDI molecules. However, the rather low measured particle radius of gyration
Ry(p) = 9.40 A can only be obtained if still a lot of isolated single WDI molecules are present

under these conditions.
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7. Scanning tunneling microscopy (STM) data

Fig. $10. STM image from an 80 uM concentrated acetonitrile solution of WDI (5 % of water) deposited on
HOPG (Ug = 1.0 V; I =100 pA; 500 nm x 500 nm).

Figure S10 depicts another POM agglomerate found on the HOPG surface after deposition
of a slightly water containing acetonitrile solution of WDI. Within a scan range of 500 nm x

500 nm only single agglomerates were detected.

We also report a curious observation made during the STM measurements with a highly
POM-covered HOPG surface (prepared with an 800 uM solution of WDI), which might easily

lead to a wrong conclusion.
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Fig. S11. Fourier filtered STM images of a highly concentrated WDI solution (800 uM) on HOPG.
(A) The hexagonal superstructure covers large area (Ug = 1.5 V; I = 100 pA; 200 nm x 200 nm). (B) 50 nm x
50 nm (Ug = 1.5 V; It = 100 pA).
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In a single measurement a well-ordered hexagonal super periodic structure with a periodicity
of 11 nm was observed, which covered the whole range of the scanning area (up to
500 nm2). The apparent height of ca. 10 pm indicated an electronic origin of the structure. A
bias voltage dependence was not observed. However, the superstructure could not be
reproduced and the subsequent measurements with other surface-sensitive techniques
such as low energy electron diffraction were not successful, so that an adsorbate related
origin can be excluded. As shows the literature survey, similar observations on HOPG were
already reported several times. These were explained by a Moiré pattern as a result of a
misalignment of the topmost graphite layer.56 Song et al. described a similar structure on
bare HOPG with a STM tip, which was modified by picking up a single Keggin-type
H3PW,,040 POM.” We assume a similar tip modification by an accidently picked up WDI
molecule. This could give rise to the superstructure observed herein. The periodicity (D) of

this Moiré pattern is a function of the rotation angle (8) at a given lattice constant (d).2

d
D =

2-sin” [1]
Taking a lattice constant of 0.246 nm for graphite and inserting a periodicity of 11 nm results
in a calculated misalignment angle of 1.3°. However, it is important to note that the observed
Moiré pattern was obviously not caused by a long range order of WDI molecules on the
surface but has been the result of a tip modification. This demonstrates impressively the

practical difficulties of STM measurements of charged particles.
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