Electronic Supplementary Information

Exploring the Surface Chemistry of Cesium Lead Halide Perovskite Nanocrystals

Roberto Grisorio, *^{a,b} Milvia Elena Di Clemente,^c Elisabetta Fanizza,^{c,d} Ignazio Allegretta,^e Davide Altamura,^f Marinella Striccoli,^{c,d} Roberto Terzano,^e Cinzia Giannini,^f Mihai Irimia-Vladu,^g Gian Paolo Suranna^{a,b}

^aDipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy. E-mail: roberto.grisorio@poliba.it

^bCNR NANOTEC – Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy.

^cDipartimento di Chimica, Università degli Studi di Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy.

^dCNR-Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy

^eDipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy

^fInstitute of Crystallography, National Research Council, via Amendola 122/O, Bari 70126, Italy

^gJoanneum Research MATERIALS - Institute for Surface Technologies and Photonics, Franz-Pichler Straße 30, Weiz A-8160, Austria.

Figure S1. TEM images of as-prepared $CsPbCl_3$ (A) and $CsPbI_3$ (B) NCs. Scale bar = 100 nm.

Figure S2. PL spectrum (recorded in cyclohexane) of the supernatant recovered after the purification step for CsPbBr₃ NCs.

Figure S3. XRD $\theta/2\theta$ scans from purified samples, showing the intensity ratio (in the legend) between the integrated areas under the two main peaks (A1 and A2).

Figure S4. As-prepared (left) and purified (right) CsPbBr₃ NCs samples in the solid state after three weeks storage under ambient conditions and room light.

Sample	Element concentration (atomic %)										Molar ratios				
	Cs		Pb		Cl		Br		Ι		Cs	Pb	Cl	Br	Ι
	Conc	SD	Conc	SD	Conc	SD	Conc	SD	Conc	SD					
CsPbI ₃	21.33	0.58	16.88	0.64	-	-	-	-	61.79	0.07	1.3	1.0	-	-	3.7
CsPb(I/Br) ₃	23.90	0.85	17.40	0.33	-	-	34.95	1.44	23.74	0.64	1.4	1.0	-	2.0	1.4
pur. CsPb(I/Br) ₃	24.23	0.26	18.63	0.29	-	-	48.05	0.79	9.09	0.30	1.3	1.0	-	2.6	0.5
CsPb(Br/Cl) ₃	25.00	0.21	19.10	0.13	29.21	0.37	26.69	0.41	-	-	1.3	1.0	1.5	1.4	-
pur. CsPb(Br/Cl) ₃	22.13	0.28	19.48	0.45	30.80	0.09	27.59	0.45	-	-	1.1	1.0	1.6	1.4	-
CsPbBr ₃	24.16	0.77	19.99	0.20	-	-	55.85	0.85	-	-	1.2	1.0	-	2.8	-
pur. CsPbBr ₃	25.02	0.26	19.60	0.20	-	-	55.37	0.05	-	-	1.3	1.0	-	2.8	-
CsPbCl ₃	21.10	0.70	19.36	0.82	59.54	0.61	-	-	-	-	1.1	1.0	3.1	-	-

Table S1. Element concentration (atomic %) and obtained molar ratios of the studied samples analyzed via FEG-SEM-EDX (n=3).

Conc = concentration

SD = standard deviation

Figure S5. EDX profiles of as-prepared and purified NCs.

Figure S6. HMBC spectrum in C_6D_6 of the supernatant solution containing the amide, highlighting the presence of the –CONH– group at $\delta = 171.8$ ppm.

Figure S7. (A) ¹H-NMR spectrum of the twice-purified CsPbBr₃ NCs in C₆D₆. (B) ¹H-NMR spectrum of the supernatant solution obtained from the relevant centrifugation in C₆D₆. (C) 2D-NOESY spectrum of twice-purified CsPbBr₃ NCs in C₆D₆; the inset shows an expansion of the vinylene region. (D) Picture of the same solution stored for one week in ambient conditions.

Figure S8. ¹*H-NMR* spectra of purified CsPbBr₃ NCs (bottom) and the relevant sample stored in ambient conditions for three weeks in C_6D_6 . The arrow points to one of the typical methylene signals (-CH₂NHCO-) attributable to the amide presence.

Figure S9. ¹*H*-*NMR* spectrum in C_6D_6 of $PbI_2/OLA/OLAm/ODE$ mixture used for the synthesis of $CsPbI_3$ NCs immediately before the addition of cesium-oleate. No signals attributable to the amide are present.

Figure S10. Comparison between the ¹H-NMR spectra of as-prepared CsPbI₃ NCs and cesiumoleate in CDCl₃.

Figure S11. (A) ¹*H-NMR* spectrum of as-prepared $CsPb(Br/Cl)_3$ NCs in C_6D_6 and (B) the relevant 2D-NOESY spectrum.

Figure S12. Expansion of the vinylene region of the 2D-NOESY spectrum of as-prepared $CsPb(I/Br)_3$ NCs in C_6D_6 evidencing the absence of tightly bound ligands.