Supporting Information

Flexible Photodetectors based on Reticulated SWNTs/Perovskites Quantum Dots Heterostructures with Ultrahigh Durability

Jialu Zheng,^a⁺ Chengzhi Luo,^{b,c}⁺ Babar Shabbir,^{a,d} Chujie Wang,^a Yupeng Zhang,^{a,d} Yamin Huang,^f Yemin Dong,^f Jacek J. Jasieniak,^a* Chunxu Pan,^{b,e}* and Qiaoliang Bao,^a*

^aDepartment of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) Monash University, Clayton, Victoria 3800, Australia.

^bSchool of Physics and Technology and MOE Key Laboratory of Artificial Micro- and Nanostructures, Wuhan University, Wuhan 430072, China.

^cSchool of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.

^dCollege of Electronic Science and Technology and College of Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China.

^eCenter for Electron Microscopy, Wuhan University, Wuhan 430072, China.

^fState Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China

⁺ These authors contributed equally to this work

Figure S1 XRD image of the PQDs (PDF card: 01-080-4039).

Figure S2: Pure reticulated SWNTs photodetectors have a very low sensitivity to external light, with limited photodetection gain (a) Schematic of a photodiode based on SWNTs film. (b) The Raman characterization of the CNT. (c)The I-V curve of the device with and without light illumination (635nm laser). (d) The temporal photocurrent response excited at 635 nm.

active materials	EQE (%)	responsivity (A W ⁻¹)	rise/decay time (ms)
CsPbBr ₃ microparticles	42	0.18	1.8/1.0
CsPbI ₃ NCs	—	_	24/29
CsPbBr ₃ nanosheet	-	-	17.8/14.7
CsPbBr3 nanoparticles/Au NCs	40	0.01	0.2/1.2
CsPb(Br/I) ₃ nanorods	-	-	680/660
CsPbBr ₃ 2D nanosheet	53	0.25	0.019/0.025
MAPbI ₃ nanoparticles	1190	3.49	100/100
MAPbI ₃ (network)	-	0.1	0.3/0.4
ТіО2-МАРЫ3		0.00049	20/20
MAPbBr3 single crystal film	>10 ⁶	4×10^{3}	0.025/0.025
MAPbI ₃ nanowires	—	5×10^{-3}	0.5/0.5
MAPbI ₃ nanowires		1.32	0.3/0.3
MAPbI ₃ microwires	-	13.5	0.08/0.24
$(RNH_3)_2(CH_3NH_3)_{n-1}M_nX_{3n+1}$		0.013	10/7.5

 Table (Supplementary): The EQE and photoresponsivity of different perovskite-based devices¹

1. X. Li, D. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Y. Shen, H. Sun and H. Zeng, *ACS Nano*, 2017, **11**, 2015-2023.